999 resultados para Equações diferenciais ordinárias. Problema de valor inicial. Existência e unicidade
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
A necessidade de obter solução de grandes sistemas lineares resultantes de processos de discretização de equações diferenciais parciais provenientes da modelagem de diferentes fenômenos físicos conduz à busca de técnicas numéricas escaláveis. Métodos multigrid são classificados como algoritmos escaláveis.Um estimador de erros deve estar associado à solução numérica do problema discreto de modo a propiciar a adequada avaliação da solução obtida pelo processo de aproximação. Nesse contexto, a presente tese caracteriza-se pela proposta de reutilização das estruturas matriciais hierárquicas de operadores de transferência e restrição dos métodos multigrid algébricos para acelerar o tempo de solução dos sistemas lineares associados à equação do transporte de contaminantes em meio poroso saturado. Adicionalmente, caracteriza-se pela implementação das estimativas residuais para os problemas que envolvem dados constantes ou não constantes, os regimes de pequena ou grande advecção e pela proposta de utilização das estimativas residuais associadas ao termo de fonte e à condição inicial para construir procedimentos adaptativos para os dados do problema. O desenvolvimento dos códigos do método de elementos finitos, do estimador residual e dos procedimentos adaptativos foram baseados no projeto FEniCS, utilizando a linguagem de programação PYTHONR e desenvolvidos na plataforma Eclipse. A implementação dos métodos multigrid algébricos com reutilização considera a biblioteca PyAMG. Baseado na reutilização das estruturas hierárquicas, os métodos multigrid com reutilização com parâmetro fixo e automática são propostos, e esses conceitos são estendidos para os métodos iterativos não-estacionários tais como GMRES e BICGSTAB. Os resultados numéricos mostraram que o estimador residual captura o comportamento do erro real da solução numérica, e fornece algoritmos adaptativos para os dados cuja malha retornada produz uma solução numérica similar à uma malha uniforme com mais elementos. Adicionalmente, os métodos com reutilização são mais rápidos que os métodos que não empregam o processo de reutilização de estruturas. Além disso, a eficiência dos métodos com reutilização também pode ser observada na solução do problema auxiliar, o qual é necessário para obtenção das estimativas residuais para o regime de grande advecção. Esses resultados englobam tanto os métodos multigrid algébricos do tipo SA quanto os métodos pré-condicionados por métodos multigrid algébrico SA, e envolvem o transporte de contaminantes em regime de pequena e grande advecção, malhas estruturadas e não estruturadas, problemas bidimensionais, problemas tridimensionais e domínios com diferentes escalas.
Resumo:
Este trabalho apresenta um estudo da solidificação de metais puros utilizando o modelo de campo de fases. O modelo é utilizado para simular a solidificação com o intuito de obter a morfologia da interface sólido-líquido sob diversas condições de transferência de calor. Foram realizados testes de validação comparando as morfologias da interface sólido-líquido obtida com as morfologias apresentadas em trabalhos anteriores para os casos bi e tridimensionais. O modelo do campo de fases adotado consiste principalmente de duas equações diferenciais: uma para calcular a variável de campo de fases e outra para calcular o campo de temperaturas. As equações foram solucionadas numericamente para um oitavo do domínio devido a simetria do problema. Os cálculos do modelo indicam que um sólido esférico com um raio inicial menor que o raio crítico de nucleação refunde. Entretanto uma esfera de raio maior cresce. Quando o sólido inicial cresce em uma malha numérica relativamente grosseira, a forma do sólido desvia da forma esférica devido perturbações na interface sólido-líquido. Quando a malha é refinada, as perturbações não são detectadas; contudo, quando introduzidas artificialmente as perturbações crescem e distorcem o formato esférico.
Resumo:
Equações diferenciais de quarta ordem aparecem naturalmente na modelagem de oscilações de estruturas elásticas, como aquelas observadas em pontes pênseis. São considerados dois modelos que descrevem as oscilações no tabuleiro de uma ponte. No modelo unidimensional estudamos blow up em espaço finito de soluções de uma classe de equações diferenciais de quarta ordem. Os resultados apresentados solucionam uma conjectura apresentada em [F. Gazzola and R. Pavani. Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations. Arch. Ration. Mech. Anal., 207(2):717752, 2013] e implicam a não existência de ondas viajantes com baixa velocidade de propagação em uma viga. No modelo bidimensional analisamos uma equação não local para uma placa longa e fina, suportada nas extremidades menores, livre nas demais e sujeita a protensão. Provamos existência e unicidade de solução fraca e estudamos o seu comportamento assintótico sob amortecimento viscoso. Estudamos ainda a estabilidade de modos simples de oscilação, os quais são classificados como longitudinais ou torcionais.
Resumo:
The uncontrolled disposal of wastewaters containing phenolic compounds by the industry has caused irreversible damage to the environment. Because of this, it is now mandatory to develop new methods to treat these effluents before they are disposed of. One of the most promising and low cost approaches is the degradation of phenolic compounds via photocatalysis. This work, in particular, has as the main goal, the customization of a bench scale photoreactor and the preparation of catalysts via utilization of char originated from the fast pyrolysis of sewage sludge. The experiments were carried out at constant temperature (50°C) under oxygen (410, 515, 650 and 750 ml min-1). The reaction took place in the liquid phase (3.4 liters), where the catalyst concentration was 1g L-1 and the initial concentration of phenol was 500 mg L-1 and the reaction time was set to 3 hours. A 400 W lamp was adapted to the reactor. The flow of oxygen was optimized to 650 ml min-1. The pH of the liquid and the nature of the catalyst (acidified and calcined palygorskite, palygorskite impregnated with 3.8% Fe and the pyrolysis char) were investigated. The catalytic materials were characterized by XRD, XRF, and BET. In the process of photocatalytic degradation of phenol, the results showed that the pH has a significant influence on the phenol conversion, with best results for pH equal to 5.5. The phenol conversion ranged from 51.78% for the char sewage sludge to 58.02% (for palygorskite acidified calcined). Liquid samples analyzed by liquid chromatography and the following compounds were identified: hydroquinone, catechol and maleic acid. A mechanism of the reaction was proposed, whereas the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. For the latter, the Langmuir-Hinshelwood model was applied, whose mass balances led to a system of differential equations and these were solved using numerical methods in order to get estimates for the kinetic and adsorption parameters. The model was adjusted satisfactorily to the experimental results. From the proposed mechanism and the operating conditions used in this study, the most favored step, regardless of the catalyst, was the acid group (originated from quinone compounds), being transformed into CO2 and water, whose rate constant k4 presented value of 0.578 mol L-1 min-1 for acidified calcined palygorskite, 0.472 mol L-1 min-1 for Fe2O3/palygorskite and 1.276 mol L-1 min-1 for the sludge to char, the latter being the best catalyst for mineralization of acid to CO2 and water. The quinones were adsorbed to the acidic sites of the calcined palygorskite and Fe2O3/palygorskite whose adsorption constants were similar (~ 4.45 L mol-1) and higher than that of the sewage sludge char (3.77 L mol-1).
Resumo:
The uncontrolled disposal of wastewaters containing phenolic compounds by the industry has caused irreversible damage to the environment. Because of this, it is now mandatory to develop new methods to treat these effluents before they are disposed of. One of the most promising and low cost approaches is the degradation of phenolic compounds via photocatalysis. This work, in particular, has as the main goal, the customization of a bench scale photoreactor and the preparation of catalysts via utilization of char originated from the fast pyrolysis of sewage sludge. The experiments were carried out at constant temperature (50°C) under oxygen (410, 515, 650 and 750 ml min-1). The reaction took place in the liquid phase (3.4 liters), where the catalyst concentration was 1g L-1 and the initial concentration of phenol was 500 mg L-1 and the reaction time was set to 3 hours. A 400 W lamp was adapted to the reactor. The flow of oxygen was optimized to 650 ml min-1. The pH of the liquid and the nature of the catalyst (acidified and calcined palygorskite, palygorskite impregnated with 3.8% Fe and the pyrolysis char) were investigated. The catalytic materials were characterized by XRD, XRF, and BET. In the process of photocatalytic degradation of phenol, the results showed that the pH has a significant influence on the phenol conversion, with best results for pH equal to 5.5. The phenol conversion ranged from 51.78% for the char sewage sludge to 58.02% (for palygorskite acidified calcined). Liquid samples analyzed by liquid chromatography and the following compounds were identified: hydroquinone, catechol and maleic acid. A mechanism of the reaction was proposed, whereas the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. For the latter, the Langmuir-Hinshelwood model was applied, whose mass balances led to a system of differential equations and these were solved using numerical methods in order to get estimates for the kinetic and adsorption parameters. The model was adjusted satisfactorily to the experimental results. From the proposed mechanism and the operating conditions used in this study, the most favored step, regardless of the catalyst, was the acid group (originated from quinone compounds), being transformed into CO2 and water, whose rate constant k4 presented value of 0.578 mol L-1 min-1 for acidified calcined palygorskite, 0.472 mol L-1 min-1 for Fe2O3/palygorskite and 1.276 mol L-1 min-1 for the sludge to char, the latter being the best catalyst for mineralization of acid to CO2 and water. The quinones were adsorbed to the acidic sites of the calcined palygorskite and Fe2O3/palygorskite whose adsorption constants were similar (~ 4.45 L mol-1) and higher than that of the sewage sludge char (3.77 L mol-1).
Resumo:
Neste trabalho obtém-se uma solução analítica para a equação de advecção-difusão aplicada a problemas de dispersão de poluentes em rios e canais. Para tanto, consideram-se os casos unidimensionais e bidimensionais em regime transiente com coeficientes de difusividade e velocidades constantes. A abordagem utilizada para a resolução deste problema é o método de Separação de Variáveis. Os modelos resolvidos foram simulados utilizando o MatLab. Apresentam-se os resultados das simulações numéricas em formato gráfico. Os resultados de algumas simulações numéricas existem na literatura e puderam ser comparados. O modelo proposto mostrou-se coerente em relação aos dados considerados. Para outras simulações não foram encontrados comparativos na literatura, todavia esses problemas governados por equações diferenciais parciais, mesmo lineares, não são de fácil solução analítica. Sendo que, muitas delas representam importantes problemas de matemática e física, com diversas aplicações na engenharia. Dessa forma, é de grande importância a disponibilidade de um maior número de problemas-teste para avaliação de desempenho de formulações numéricas, cada vez mais eficazes, já que soluções analíticas oferecem uma base mais segura para comparação de resultados.
Resumo:
Dissertação para obtenção do Grau de Doutor em Matemática na área de especialização de Análise Numérica
Resumo:
Dissertação de mestrado em Optometria Avançada
Resumo:
É estudado o comportamento de pós-encurvadura de painéis sanduiche axialmente comprimidos. Aborda-se o problema com formulação alternativas, permitindo investigar a possibilidade de configurações deformadas deferentes daquelas obtidas por uma análise de Rayleigh-Ritz convencional. São usados alguns princípios gerais de elasticidade, deduzindo-se a função de emergia potencial total, dependente de um campo de deslocamentos. Admite-se um campo harmónico de amplitude constante, que é introduzido na função da energia potencial total, e discutem-se algumas diferenças observadas nos estudos, em relação a modelos estudados anteriormente. As técnicas utilizadas na pesquisa de soluções localizadas são introduzidas com o estudo do problema da viga em função elástica não linear. Analogia dinâmica e a técnica de dupla escala com perturbação são utilizadas para a introdução de conceitos de localização. Por último, aplica-se a um painel sanduíche a técnica de dupla escala com perturbação para deduzir as equações diferenciais nas amplitudes. Discute-se a solução destas equações com alguns exemplos, fazendo-se a resolução analítica e numérica das equações diferencias nas amplitudes.