963 resultados para Equações diferenciais não-lineares - Soluções numericas
Resumo:
A produção de soja é uma das principais atividades econômicas na Região Noroeste do Estado do Rio Grande do Sul. As perdas de produto em condições de comercialização ocasionadas nas atividades de secagem e armazenamento são significativas, justificando a pesquisa e aprimoramento destes processos. Nesta tese foram pesquisados dois problemas: 1. Modelamento matemático dos processos de secagem, utilizando parâmetros conhecidos de soja e 2. Modelamento matemático do problema de aeração para o cálculo da distribuição da pressão e da velocidade do ar na massa de grãos em unidades de armazenamento de soja. No problema de secagem foi desenvolvido um sistema composto de quatro equações diferenciais parciais hiperbólicas acopladas não-lineares, que descreve o comportamento da temperatura e do teor de umidade do ar e dos grãos em função do tempo. Para resolver o sistema foram utilizados os métodos das diferenças finitas (p. ex., métodos de MacCormack e Crank- Nicolson.) e o método dos volumes finitos. A análise dos resultados permitiu recomendar o método mais adequado para cada tipo do problema. Para determinação da intensidade do fluxo de massa e de calor foram utilizados os dados experimentais de camada fina obtidos da literatura e complementados com dados experimentais desta tese. Foi desenvolvido um equipamento para obtenção das curvas de secagem de grãos em secador de leito fixo, a fim de identificar o modelo para secagem em camada espessa. A comparação entre os resultados experimentais e das simulações numéricas mostrou que o modelo descreve razoavelmente a dinâmica de secagem No problema de aeração foi desenvolvido um modelo matemático que descreve o escoamento do ar em sistemas de armazenamento de grãos, baseado em relações experimentais entre velocidade e gradiente de pressão. Para resolver o problema de aeração foi utilizado o método dos elementos finitos e desenvolvido um programa computacional. Um teste realizado com o programa mostrou que os resultados da solução numérica convergem para uma solução analítica conhecida. As simulações realizadas mostraram que o programa computacional pode ser usado como instrumento auxiliar para o projeto de silos, possibilitando o cálculo e a visualização gráfica da distribuição das pressões e das linhas de corrente em diferentes seções do armazém.
Resumo:
Neste trabalho é resolvido o problema da minimização do volume de estruturas bidimensionais contínuas submetidas a restrições sobre a flexibilidade (trabalho das forças externas) e sobre as tensões, utilizando a técnica chamada otimização topológica, que visa encontrar a melhor distribuição de material dentro de um domínio de projeto pré-estabelecido. As equações de equilíbrio são resolvidas através do método dos elementos finitos, discretizando a geometria e aproximando o campo de deslocamentos. Dessa forma, essas equações diferenciais são transformadas em um sistema de equações lineares, obtendo como resposta os deslocamentos nodais de cada elemento. A distribuição de material é discretizada como uma densidade fictícia constante por elemento finito. Esta densidade define um material isotrópico poroso de uma seqüência pré-estabelecida (SIMP). A otimização é feita através da Programação Linear Seqüencial. Para tal, a função objetivo e as restrições são sucessivamente linearizadas por expansão em Série de Taylor. A análise de sensibilidade para a restrição de flexibilidade é resolvida utilizando o cálculo da sensibilidade analítico adaptado para elementos finitos de elasticidade plana. Quando as restrições consideradas são as tensões, o problema torna-se mais complexo. Diferente da flexibilidade, que é uma restrição global, cada elemento finito deve ter sua tensão controlada. A tensão de Von Mises é o critério de falha considerado, cuja sensibilidade foi calculada de acordo com a metodologia empregada por Duysinx e Bendsøe [Duysinx e Bendsøe, 1998] Problemas como a instabilidade de tabuleiro e dependência da malha sempre aparecem na otimização topológica de estruturas contínuas. A fim de minimizar seus efeitos, um filtro de vizinhança foi implementado, restringindo a variação da densidade entre elementos adjacentes. Restrições sobre as tensões causam um problema adicional, conhecido como singularidade das tensões, fazendo com que os algoritmos não convirjam para o mínimo global. Para contornar essa situação, é empregada uma técnica matemática de perturbação visando modificar o espaço onde se encontra a solução, de forma que o mínimo global possa ser encontrado. Esse método desenvolvido por Cheng e Guo [Cheng e Guo, 1997] é conhecido por relaxação-ε e foi implementado nesse trabalho.
Resumo:
Neste trabalho e apresentado um avanço na tecnica GILTT(Generalized Integral and Laplace Transform Technique) solucionando analiticamente um sistema de EDO's(Equações Diferenciais Ordinarias) de segunda ordem resultante da transformação pela GITT(Generalized Integral Transform Technique). Este tipo de problema usualmente aparece quando esta tecnica é aplicada na solução de problemas bidimensionais estacionários. A principal idéia consiste na redução de ordem do problema transformado em outro sistema de EDO's lineares de primeira ordem e a solução analítica deste problema, pela técnica da transformada de Laplace. Como exemplo de aplicação é resolvida a equação da energia linear bidimensional e estacionária. São apresentadas simulações numéricas e comparações com resultados disponíveis na literatura.
Resumo:
Neste trabalho, apresentaremos uma solução analítica, aplicando o método da decomposição de Adomian, para as equações da cinética pontual para reatividade arbitrária, um sistema de equações diferenciais ordinárias do tipo "Stiff". Apresen- taremos, ainda, simulações numéricas para as reatividades do tipo constante, linear, senoidal e exponencial, bem como faremos comparações com resultados disponíveis na literatura.
Resumo:
A presente dissertação versa sobre a sincronização idêntica em redes de osciladores caóticos. Uma perspectiva razoavelmente histórica sobre a literatura da área é apresentada . O conceito de caos é introduzido junto com outras idéias da dinâmica não-linear: sistemas dinâmicos, exemplos de sistemas, atratores, expoentes de Liapunov, etc. A integração numérica de equações diferenciais é largamente utilizada, principalmente, para o cálculo de expoentes e o desenho do diagrama de fases. A sincronização idêntica é definida, inicialmente, em redes que não passam de um par de osciladores. A variedade de sincronização (conjunto de pontos no espaço de fases no qual a solução do sistema é encontrada se há sincronização) é determinada. Diferentes variantes de acoplamentos lineares são enfocadas: acoplamento interno, externo, do tipo mestre-escravo e birecional, entre outras. Para detectar sincronização, usa-se o conceito de expoente de Liapunov transversal, uma extensão do conceito clássico de expoente de Liapunov que caracteriza a sincronização como a existência de um atrator na variedade de sincronização. A exposição é completada com exemplos e atinge relativo detalhe sobre o assunto, sem deixar de ser sintética com relação à ampla literatura existente. Um caso de sincronização em antifase que usa a mesma análise é incluído. A sincronização idêntica também é estudada em redes de osciladores idênticos com mais de dois osciladores. As possibilidades de sincronização completa e parcial são explanadas. As técnicas usadas para um par de osciladores são expandidas para cobrir este novo tipo de redes. A existência de variedades de sincronização invariantes é considerada como fator determinante para a sincronização. A sincronização parcial gera estruturas espaciais, analisadas sob a denominação de padrões. Algumas relações importantes entre as sincronizações são explicitadas, principalmente as degenerescências e a relação entre a sincronização parcial e a sincronização completa do respectivo estado sincronizado para alguns tipos de acoplamento. Ainda são objetos de interesse as redes formadas por grupos de osciladores idênticos que são diferentes dos osciladores dos outros grupos. A sincronização parcial na qual todos os grupos de osciladores têm seus elementos sincronizados é chamada de sincronização primária. A sincronização secundária é qualquer outro tipo de sincronização parcial. Ambas são exemplificadas e analisadas por meio dos expoentes transversais e novamente por meio da existência de invariantes de sincronização. Obtém-se, então, uma caracterização suficientemente ampla, completada por casos específicos.
Resumo:
O presente trabalho apresenta um novo esquema de criptografia de chave pública baseado no emprego de funções para representar as mensagens original e cifrada. No esquema proposto – denominado Rafaella -, o processo de cifração consiste na aplicação de um deslocamento no argumento da função que representa a mensagem, de modo que se f(x) descreve a mensagem original, então f(x+z) representa a respectiva mensagem cifrada. O deslocamento z representa um número complexo que, no esquema proposto, representa a forma das chaves privadas dos participantes. A dificuldade da resolução do problema inversos concentra-se na obtenção das partes real e imaginária do deslocamento z, que pode ser efetuada através de método de força bruta, ou da resolução de um problema de contorno. A segunda alternativa envolve a resolução de equações diferenciais. Dentre os métodos disponíveis para a resolução de equações diferenciais, o emprego dos chamados grupos de Lie constitui, via de regra, a estratégia mais apropriada para a obtenção de soluções analíticas, que demandam menor tempo de processamento do que as formulações numéricas. Mesmo assim, a solução obtida através da utilização dos grupos de Lie requer elevado número de operações simbólicas.
Resumo:
Em modelos em que a distribuição espacial da população não é con- siderada, isto é, quando se supõe que haja uma homogeneidade espacial, e se estuda a evolução temporal do sistema, há uma única variável independente: o tempo. Caso a população seja constituída de duas espécies, do tipo parasitóide-hospedeiro, e a variável independente tempo for considerada discreta, teremos um sistema de equações a diferenças, como por exemplo o modelo de Nicholson-Bailey cujas soluções são apresentadas neste trabalho. Populações espacialmente distribuídas, em um espaço de natureza discreta, juntamente com a dinâmica vital em tempo discreto, têm o seu comportamento estudado através de redes de mapas acoplados. Após estudar o modelo de Hassell (dinâmica vital de Nicholson-Bailey com movimentação por difusão) e o modelo planta-herbívoro com movimentação por taxia, deduzimos e simulamos um modelo incluindo movimentação por taxia, difusão e convecção. É também apresentado neste trabalho, um paralelo entre estes modelos de redes de mapas acoplados e aqueles com as equações diferenciais correspondentes.
Resumo:
Na modelagem de sistemas complexos, abordagens analíticas tradicionais com equações diferenciais muitas vezes resultam em soluções intratáveis. Para contornar este problema, Modelos Baseados em Agentes surgem como uma ferramenta complementar, onde o sistema é modelado a partir de suas entidades constituintes e interações. Mercados Financeiros são exemplos de sistemas complexos, e como tais, o uso de modelos baseados em agentes é aplicável. Este trabalho implementa um Mercado Financeiro Artificial composto por formadores de mercado, difusores de informações e um conjunto de agentes heterogêneos que negociam um ativo através de um mecanismo de Leilão Duplo Contínuo. Diversos aspectos da simulação são investigados para consolidar sua compreensão e assim contribuir com a concepção de modelos, onde podemos destacar entre outros: Diferenças do Leilão Duplo Contínuo contra o Discreto; Implicações da variação do spread praticado pelo Formador de Mercado; Efeito de Restrições Orçamentárias sobre os agentes e Análise da formação de preços na emissão de ofertas. Pensando na aderência do modelo com a realidade do mercado brasileiro, uma técnica auxiliar chamada Simulação Inversa, é utilizada para calibrar os parâmetros de entrada, de forma que trajetórias de preços simulados resultantes sejam próximas à séries de preços históricos observadas no mercado.
Resumo:
O item não apresenta o texto completo, para aquisição do livro na íntegra você poderá acessar a Editora da UFSCar por meio do link: www.editora.ufscar.br
Resumo:
O propósito principal desta tese é a extensão do espaço S′ (IR) das distribuições temperadas de Schwartz, usando o mesmo método de dualidade utilizado por Laurent Schwartz na sua Teoria das Distribuições (ver [Sch66]). Neste sentido, construímos um espaço de ultradistribuições exponenciais, X′, que é fechado para os operadores de derivação, translação complexa e transformação de Fourier. Para além destes operadores serem lineares e contínuos de X′ em X′, a translação complexa e a transformação de Fourier definem um isomorfismo vectorial e topológico neste espaço de ultradistribuições o que, como sabemos, generaliza o belo resultado de Schwartz para as distribuições temperadas. Estudamos as propriedades topológicas de X′ e demonstramos que o espaço S′ (IR) está contido com injecção canónica contínua e densa no nosso espaço de ultradistribuições exponenciais. A construção do espaço X′ baseia-se na estruturação de um espaço de funções teste X, que se injecta canónica, contínua e densamente em S (IR) . Este espaço X é um limite projectivo maximal de um espectro projectivo, constituído por espaços localmente convexos; definimos X′ como sendo o dual forte de X. Por fim, identificamos algumas ultradistribuições de X′, obtemos algumas séries de multipolos convergentes neste espaço e vemos que estas séries têm grande aplicabilidade na resolução de equações diferenciais ordinárias.
Resumo:
In this work, we have studied the acoustic phonon wave propagation within the periodic and quasiperiodic superlattices of Fibonacci type. These structures are formed by phononic crystals, whose periodicity allows the raise of regions known as stop bands, which prevent the phonon propagation throughout the structure for specific frequency values. This phenomenon allows the construction of acoustic filters with great technological potential. Our theoretical model were based on the method of the transfer matrix, thery acoustics phonons which describes the propagation of the transverse and longitudinal modes within a unit cell, linking them with the precedent cell in the multilayer structure. The transfer matrix is built taking into account the elastic and electromagnetic boundary conditions in the superllatice interfaces, and it is related to the coupled differential equation solutions (elastic and electromagnetic) that describe each model under consideration. We investigated the piezoelectric properties of GaN and AlN the nitride semiconductors, whose properties are important to applications in the semiconductor device industry. The calculations that characterize the piezoelectric system, depend strongly on the cubic (zinc-bend) and hexagonal (wurtzite) crystal symmetries, that are described the elastic and piezoelectric tensors. The investigation of the liquid Hg (mercury), Ga (gallium) and Ar (argon) systems in static conditions also using the classical theory of elasticity. Together with the Euler s equation of fluid mechanics they one solved to the solid/liquid and the liquid/liquid interfaces to obtain and discuss several interesting physical results. In particular, the acoustical filters obtained from these structures are again presented and their features discussed
Resumo:
This paper has two objectives: (i) conducting a literature search on the criteria of uniqueness of solution for initial value problems of ordinary differential equations. (ii) a modification of the method of Euler that seems to be able to converge to a solution of the problem, if the solution is not unique
Resumo:
In this work are presented, as a review and in a historical context, the most used methods to solve quadratic equations. It is also shown the simplest type of change of variables, namely: x = Ay + B where A;B 2 R, and some changes of variables that were used to solve quadratic equations throughout history. Finally, a change of variable, which has been used by the author in the classroom as an alternative method, is presented and the result of this methodoly is illustrated by the responses of a test that was done by the students in classroom
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)