942 resultados para Epithelial defect


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protease-activated receptor, interleukin, thrombin, trypsin, asthma

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barrett's esophagus is an epithelial metaplasia associated with an increased risk for cancer, but its underlying mechanisms have been debated. Now Wang et al. (2011) suggest an intriguing explanation for this puzzle: a population of residual embryonic cells, lacking the transcription factor p63, migrates and repopulates a normal tissue damaged by inflammation or gastroesophageal reflux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) is preferentially assembled into heteromeric alphabetagamma complexes. The alpha and gamma (not beta) subunits undergo proteolytic cleavage by endogenous furin-like activity correlating with increased ENaC function. We identified full-length subunits and their fragments at the cell surface, as well as in the intracellular pool, for all homo- and heteromeric combinations (alpha, beta, gamma, alphabeta, alphagamma, betagamma, and alphabetagamma). We assayed corresponding channel function as amiloride-sensitive sodium transport (I(Na)). We varied furin-mediated proteolysis by mutating the P1 site in alpha and/or gamma subunit furin consensus cleavage sites (alpha(mut) and gamma(mut)). Our findings were as follows. (i) The beta subunit alone is not transported to the cell surface nor cleaved upon assembly with the alpha and/or gamma subunits. (ii) The alpha subunit alone (or in combination with beta and/or gamma) is efficiently transported to the cell surface; a surface-expressed 65-kDa alpha ENaC fragment is undetected in alpha(mut)betagamma, and I(Na) is decreased by 60%. (iii) The gamma subunit alone does not appear at the cell surface; gamma co-expressed with alpha reaches the surface but is not detectably cleaved; and gamma in alphabetagamma complexes appears mainly as a 76-kDa species in the surface pool. Although basal I(Na) of alphabetagamma(mut) was similar to alphabetagamma, gamma(mut) was not detectably cleaved at the cell surface. Thus, furin-mediated cleavage is not essential for participation of alpha and gamma in alphabetagamma heteromers. Basal I(Na) is reduced by preventing furin-mediated cleavage of the alpha, but not gamma, subunits. Residual current in the absence of furin-mediated proteolysis may be due to non-furin endogenous proteases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carriers of mutations in the cell cycle checkpoint protein kinase ataxia telangiectasia mutated (ATM), which represent 1-2% of the general population, have an increased risk of breast cancer. However, experimental evidence that ATM deficiency contributes to human breast carcinogenesis is lacking. We report here that in MCF-10A and MCF-12A cells, which are well established normal human mammary gland epithelial cell models, partial or almost complete stable ATM silencing or pharmacological inhibition resulted in cellular transformation, genomic instability, and formation of dysplastic lesions in NOD/SCID mice. These effects did not require the activity of exogenous DNA-damaging agents and were preceded by an unsuspected and striking increase in cell proliferation also observed in primary human mammary gland epithelial cells. Increased proliferation correlated with a dramatic, transient, and proteasome-dependent reduction of p21(WAF1/CIP1) and p27(KIP1) protein levels, whereas little or no effect was observed on p21(WAF1/CIP1) or p27(KIP1) mRNAs. p21(WAF1/CIP1) silencing also increased MCF-10A cell proliferation, thus identifying p21(WAF1/CIP1) down-regulation as a mediator of the proliferative effect of ATM inhibition. Our findings provide the first experimental evidence that ATM is a human breast tumor suppressor. In addition, they mirror the sensitivity of ATM tumor suppressor function and unveil a new mechanism by which ATM might prevent human breast tumorigenesis, namely a direct inhibitory effect on the basal proliferation of normal mammary epithelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine whether the relative afferent pupillary defect (RAPD) remains constant over time in normal subjects. METHODS: Seventeen normal subjects were tested with infrared pupillography and automated perimetry in four sessions over 3 years. The changes in RAPD and visual field asymmetry between testing sessions were compared. RESULTS: The range of RAPD was 0.0 to 0.3 log unit, and the difference in the mean deviation between the eyes on automated static perimetry was 0 to 3 dB. Eight subjects repeatedly had an RAPD in the same eye. There was no correlation between the RAPD and the visual field asymmetry at the same visit. Changes in the magnitude of the RAPD between any two sessions were typically small (median, 0.08 log unit; 25th percentile, 0.04 log unit; 75th percentile, 0.15 log unit). CONCLUSIONS: Some normal subjects may show a persistent but small RAPD in the absence of detectable pathologic disease. Therefore, an isolated RAPD in the range of 0.3 log unit that is not associated with any other significant historical or clinical finding should probably be considered benign.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A role for cytokine regulated proteins in epithelial cells has been suggested in the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to identify such cytokine regulated targets using a proteomic functional approach. Protein patterns from (35)S-radiolabeled homogenates of cultured colon epithelial cells were compared before and after exposure to interferon-gamma, interleukin-1beta and interleukin-6. Proteins were separated by two-dimensional polyacrylamide gel electrophoresis. Both autoradiographies and silver stained gels were analyzed. Proteins showing differential expression were identified by tryptic in-gel digestion and mass spectrometry. Metabolism related proteins were also investigated by Western blot analysis. Tryptophanyl-tRNA synthetase, indoleamine-2,3-dioxygenase, heterogeneous nuclear ribonucleoprotein JKTBP, interferon-induced 35kDa protein, proteasome subunit LMP2 and arginosuccinate synthetase were identified as cytokine modulated proteins in vitro. Using purified epithelial cells from patients, overexpression of indoleamine-2,3-dioxygenase, an enzyme involved in tryptophan metabolism, was confirmed in Crohn's disease as well as in ulcerative colitis, as compared to normal mucosa. No such difference was found in diverticulitis. Potentially, this observation opens new avenues in the treatment of IBD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Surgical correction of complete atrio-ventricular septal defect (AVSD) achieves satisfactory results with low morbidity and mortality, but may require reoperation. Our recent operative results at mid-term were followed-up. METHODS: From June 2000 to December 2007, 81 patients (Down syndrome; n=60), median age 4.0 months (range 0.7-118.6) and weight 4.7kg (range 2.2-33), underwent complete AVSD correction. Patch closure for the ventricular septal defect (VSD; n=69) and atrial septal defect (ASD; n=42) was performed with left atrio-ventricular valve (LAVV) cleft closure (n=76) and right atrio-ventricular valve (RAVV) repair (n=57). Mortality, morbidity, and indications for reoperation were retrospectively studied; the end point 'time to reoperation' was analyzed using Kaplan-Meier curves. Follow-up was complete except in two patients and spanned a median of 28 months (range 0.4-6.1 years). RESULTS: In-hospital mortality was 3.7% (n=3) and one late death occurred. Reoperation was required in 7/79 patients (8.9%) for LAVV insufficiency (n=4), for a residual ASD (n=1), for right atrio-ventricular valve insufficiency (n=1), and for subaortic stenosis (n=1). At last follow-up, no or only mild LAVV and RAVV insufficiency was present in 81.3% and 92.1% of patients, respectively, and 2/3 of patients were medication-free. Risk factors for reoperation were younger age (<3 months; p=0.001) and lower weight (<4kg; p=0.003), and a trend towards less and later reoperations in Down syndrome (p<0.2). CONCLUSIONS: Surgical correction of AVSD can be achieved with low mortality and need for reoperation, regardless of Down syndrome or not. Immediate postoperative moderate or more residual atrio-ventricular valve insufficiency will eventually require a reoperation, and could be anticipated in patients younger than 3 months and weighing <4kg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A glucocorticoid-responsive vector is described which allows for the highly inducible expression of complementary DNAs (cDNAs) in stably transfected mammalian cell lines. This vector, pLK-neo, composed of a variant mouse mammary tumor virus long terminal repeat promoter, containing a hormone regulatory element, a Geneticin resistance-encoding gene in a simian virus 40 transcription unit, and a polylinker insertion site for heterologous cDNAs, was used to express the polymeric immunoglobulin (poly-Ig) receptor and the thymocyte marker, Thy-1, in Madin-Darby canine kidney (MDCK) cells and in murine fibroblast L cells. A high level of poly-Ig receptor or Thy-1 mRNA accumulation was observed in MDCK cells in response to dexamethasone with a parallel ten- to 200-fold increase in protein synthesis depending on the recombinant protein and the transfected cell clone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shigella flexneri, by invading intestinal epithelial cells (IECs) and inducing inflammatory responses of the colonic mucosa, causes bacillary dysentery. Although M cells overlying Peyer's patches are commonly considered the primary site of entry of S. flexneri, indirect evidence suggests that bacteria can also use IECs as a portal of entry to the lamina propria. Passive delivery of secretory IgA (SIgA), the major immunoglobulin secreted at mucosal surfaces, has been shown to protect rabbits from experimental shigellosis, but no information exists as to its molecular role in maintaining luminal epithelial integrity. We have established that the interaction of virulent S. flexneri with the apical pole of a model intestinal epithelium consisting of polarized Caco-2 cell monolayers resulted in the progressive disruption of the tight junction network and actin depolymerization, eventually resulting in cell death. The lipopolysaccharide (LPS)-specific agglutinating SIgAC5 monoclonal antibody (MAb), but not monomeric IgAC5 or IgGC20 MAbs of the same specificity, achieved protective functions through combined mechanisms, including limitation of the interaction between S. flexneri and epithelial cells, maintenance of the tight junction seal, preservation of the cell morphology, reduction of NF-κB nuclear translocation, and inhibition of proinflammatory mediator secretion. Our results add to the understanding of the function of SIgA-mediated immune exclusion by identifying a mode of action whereby the formation of immune complexes translates into maintenance of the integrity of epithelial cells lining the mucosa. This novel mechanism of protection mediated by SIgA is important to extend the arsenal of effective strategies to fight against S. flexneri mucosal invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the mitogen-activated protein (MAP) kinase cascade by progesterone in Xenopus oocytes leads to a marked down-regulation of activity of the amiloride-sensitive epithelial sodium channel (ENaC). Here we have studied the signaling pathways involved in progesterone effect on ENaC activity. We demonstrate that: (i) the truncation of the C termini of the alphabetagammaENaC subunits results in the loss of the progesterone effect on ENaC; (ii) the effect of progesterone was also suppressed by mutating conserved tyrosine residues in the Pro-X-X-Tyr (PY) motif of the C termini of the beta and gamma ENaC subunits (beta(Y618A) and gamma(Y628A)); (iii) the down-regulation of ENaC activity by progesterone was also suppressed by co-expression ENaC subunits with a catalytically inactive mutant of Nedd4-2, a ubiquitin ligase that has been previously demonstrated to decrease ENaC cell-surface expression via a ubiquitin-dependent internalization/degradation mechanism; (iv) the effect of progesterone was significantly reduced by suppression of consensus sites (beta(T613A) and gamma(T623A)) for ENaC phosphorylation by the extracellular-regulated kinase (ERK), a MAP kinase previously shown to facilitate the binding of Nedd4 ubiquitin ligases to ENaC; (v) the quantification of cell-surface-expressed ENaC subunits revealed that progesterone decreases ENaC open probability (whole cell P(o), wcP(o)) and not its cell-surface expression. Collectively, these results demonstrate that the binding of active Nedd4-2 to ENaC is a crucial step in the mechanism of ENaC inhibition by progesterone. Upon activation of ERK, the effect of Nedd4-2 on ENaC open probability can become more important than its effect on ENaC cell-surface expression.