995 resultados para Epidemiologic Transition
Resumo:
Indigenous Australians are among the most unhealthy populations in the world and yet they reside in a country where the non-Indigenous population enjoys high standards of well-being. Education has been identified as the key mechanism for closing this equity gap. At school commencement many Indigenous children are already at risk of disengagement. This four-year longitudinal study of two Indigenous boys from a socially marginalised community examined key factors affecting transitional trajectories into school. While child characteristics affected level of achievement the critical factors in sustaining positive educational engagement were social support, school practices, inclusion of family and positive expectation.
Resumo:
This study reports on an intervention program designed to facilitate transition to school of a whole community of Indigenous Australian children who had previously not been attending. The children were from families displaced from their traditional lands and experienced on-going social marginalisation and transience. A social capital framework was employed to track change in the children’s social inclusion and family-school engagement for two years, from school entry. Sociometric measurement and interview techniques were applied to assess the children’s social connectedness and peer relationship quality. Using these data, analyses examined whether bonding within the group supported or inhibited formation of new social relationships. Although transience disrupted attendance, there was a group trend towards increased social inclusion with some evidence that group bonds supported bridging to new social relationships. Change in family-school engagement was tracked using multi-informant interviews. Limited engagement between school and families presented an on-going challenge to sustained educational engagement.
Resumo:
We appreciate Holmes' body of work relating to transitions within the Australian landscape, and welcome the opportunity to engage in a discussion on this topic. The paper to which Holmes refers (Bjørkhaug and Richards, 2008) examined the application of agricultural (rather than landscape) multifunctionality in both Norway and Australia. Of specific focus was how non-tradeable concerns, such as environmental sustainability, faired under these divergent systems. We argued that Norway's multifunctionality was strong, due to it being embraced at both the policy and actor level, whereas Australia's could be described as weak. This ‘weak multifunctionality’ that we observed in Australia was due to an emerging bi-lateral (state and federal) policy framework that advocated the importance of environmental values which was rarely embraced by landholders who found themselves trapped on the ‘agricultural treadmill’. The nature of the treadmill is that alternative forms of land use are unthinkable when on-farm investments have been made that support the status quo – to get bigger and/or more efficient. For many of the Australian landholders interviewed in relation to this study, efficiency in production was at odds with the values necessary to effect a transition toward multifunctionality. For instance, graziers in Central Queensland were unconvinced of the value of conserving native flora and fauna when economic viability can be better assured through clear felling native forests to increase the productive capacity of the land.
Resumo:
Pockets of Change collects fourteen essays that address issues of cultural adaptation and transition in the Arts. Based on insights into a range of primary texts and cultural practices—from visual art to film, from literature to theatre—these essays investigate the ways in which traditions, art-forms, cultures and ethics adapt to challenge established boundaries.
Resumo:
Nurse graduates indicate the transition from student of nursing to registered nurse (RN) is a difficult conversion. This impending change of role and accompanying higher expectations placed upon newly graduating RNs causes concern for students as their Bachelor of Nursing program nears completion. A career mentor scheme is suggested as a way to better prepare final year students for this transition. Evaluations indicate the positive impact the scheme has made on both mentors and mentees as it has enhanced their career development.
Resumo:
In 1992 the Queensland University of Technology (QUT) Convocation initiated the Mentor Scheme to assist students to better prepare for the transition to employment. The scheme has developed over the past six years and in 1998 more than 130 pairs of employers and students from 12 different disciplines participated in it. Evaluations indicate the positive impact the scheme has made on both mentors and mentees, particularly in enhancing mentees' career development.
Resumo:
Discontinuity between prior-to-school and school sectors in Australia reflects an historical, philosophical and pedagogical schism. This is most evident as children transition from one sector to the other. However, contemporary international research, alongside an intensive focus on policy and practice in early years education has challenged many of the taken-for-granted assumptions that perpetuate this rift. Drawing on data collected in a recent action research project, we present evidence of how a group of primary school kindergarten teachers define differences between orientation and transition programs, understand the importance of transition and how they position themselves in this process. The absence of Australian policy mandating and guiding the work of teachers across sectors is a significant factor perpetuating discontinuity in transition practices between prior–to-school and school sectors.
Resumo:
The field of research of epithelial-mesenchymal transitions, EMT, and its reverse, mesenchymal-epithelial transitions, MET, has expanded very rapidly indeed from its beginnings, heralded by Professor Betty Hay in the 1970s and 1980s. This expansion has involved the realisation that the EMT was not just an interesting phenomenon of early developmental morphogenetic cell behaviour, but bore remarkable resemblance to clinically crucial pathological events in cancer invasion. Not surprisingly, this discipline soon became numerically dominant in the EMT publication field. Simultaneously, the EMT concept has been extended to normal physiological wound healing. Exploration revealed that these resemblances were more than skin deep: the same sets of growth factors, receptors, transcription factors, epigenetic marks and signalling pathways turned up repeatedly in EMTs and METs in a variety of contexts, both pathological and normal. This molecular genetic research in turn uncovered similarities of the EMT signature to that of fibrosis, a set of diseases which is of enormous clinical importance, rivalling that of cancer. Most recently, and more surprisingly, the EMT signature has shown considerable similarity to that found in stem cell and cancer stem cell biology.
Resumo:
Introduction Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells. Methods MYB, ZEB1, and CDH1 expression levels were manipulated by lentiviral small-hairpin RNA (shRNA)-mediated knockdown/overexpression, and verified with Western blotting, immunocytochemistry, and qRT-PCR. Proliferation was assessed with bromodeoxyuridine pulse labeling and flow cytometry, and sulforhodamine B assays. EMT was induced with epidermal growth factor for 9 days or by exposure to hypoxia (1% oxygen) for up to 5 days, and assessed with qRT-PCR, cell morphology, and colony morphology. Protein expression in human breast cancers was assessed with immunohistochemistry. ZEB1-MYB promoter binding and repression were determined with Chromatin Immunoprecipitation Assay and a luciferase reporter assay, respectively. Student paired t tests, Mann–Whitney, and repeated measures two-way ANOVA tests determined statistical significance (P < 0.05). Results Parental PMC42-ET cells displayed higher expression of ZEB1 and lower expression of MYB than did the PMC42-LA epithelial variant. Knockdown of ZEB1 in PMC42-ET and MDA-MB-231 cells caused increased expression of MYB and a transition to a more epithelial phenotype, which in PMC42-ET cells was coupled with increased proliferation. Indeed, we observed an inverse relation between MYB and ZEB1 expression in two in vitro EMT cell models, in matched human breast tumors and lymph node metastases, and in human breast cancer cell lines. Knockdown of MYB in PMC42-LA cells (MYBsh-LA) led to morphologic changes and protein expression consistent with an EMT. ZEB1 expression was raised in MYBsh-LA cells and significantly repressed in MYB-overexpressing MDA-MB-231 cells, which also showed reduced random migration and a shift from mesenchymal to epithelial colony morphology in two dimensional monolayer cultures. Finally, we detected binding of ZEB1 to MYB promoter in PMC42-ET cells, and ZEB1 overexpression repressed MYB promoter activity. Conclusions This work identifies ZEB1 as a transcriptional repressor of MYB and suggests a reciprocal MYB-ZEB1 repressive relation, providing a mechanism through which proliferation and the epithelial phenotype may be coordinately modulated in breast cancer cells.
Resumo:
Background Epithelial-mesenchymal transition (EMT) is a process implicated in cancer metastasis that involves the conversion of epithelial cells to a more mesenchymal and invasive cell phenotype. In breast cancer cells EMT is associated with altered store-operated calcium influx and changes in calcium signalling mediated by activation of cell surface purinergic receptors. In this study, we investigated whether MDA-MB-468 breast cancer cells induced to undergo EMT exhibit changes in mRNA levels of calcium channels, pumps and exchangers located on intracellular calcium storing organelles, including the Golgi, mitochondria and endoplasmic reticulum (ER). Methods Epidermal growth factor (EGF) was used to induce EMT in MDA-MB-468 breast cancer cells. Serum-deprived cells were treated with EGF (50 ng/mL) for 12 h and gene expression was assessed using quantitative RT-PCR. Results and conclusions These data reveal no significant alterations in mRNA levels of the Golgi calcium pump secretory pathway calcium ATPases (SPCA1 and SPCA2), or the mitochondrial calcium uniporter (MCU) or Na+/Ca2+ exchanger (NCLX). However, EGF-induced EMT was associated with significant alterations in mRNA levels of specific ER calcium channels and pumps, including (sarco)-endoplasmic reticulum calcium ATPases (SERCAs), and inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RYR) calcium channel isoforms. The most prominent change in gene expression between the epithelial and mesenchymal-like states was RYR2, which was enriched 45-fold in EGF-treated MDA-MB-468 cells. These findings indicate that EGF-induced EMT in breast cancer cells may be associated with major alterations in ER calcium homeostasis.
Resumo:
Signals from the tumor microenvironment trigger cancer cells to adopt an invasive phenotype through epithelial-mesenchymal transition (EMT). Relatively little is known regarding key signal transduction pathways that serve as cytosolic bridges between cell surface receptors and nuclear transcription factors to induce EMT. A better understanding of these early EMT events may identify potential targets for the control of metastasis. One rapid intracellular signaling pathway that has not yet been explored during EMT induction is calcium. Here we show that stimuli used to induce EMT produce a transient increase in cytosolic calcium levels in human breast cancer cells. Attenuation of the calcium signal by intracellular calcium chelation significantly reduced epidermal growth factor (EGF)- and hypoxia-induced EMT. Intracellular calcium chelation also inhibited EGF-induced activation of signal transducer and activator of transcription 3 (STAT3), while preserving other signal transduction pathways such as Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. To identify calcium-permeable channels that may regulate EMT induction in breast cancer cells, we performed a targeted siRNA-based screen. We found that transient receptor potential-melastatin-like 7 (TRPM7) channel expression regulated EGF-induced STAT3 phosphorylation and expression of the EMT marker vimentin. Although intracellular calcium chelation almost completely blocked the induction of many EMT markers, including vimentin, Twist and N-cadherin, the effect of TRPM7 silencing was specific for vimentin protein expression and STAT3 phosphorylation. These results indicate that TRPM7 is a partial regulator of EMT in breast cancer cells, and that other calcium-permeable ion channels are also involved in calcium-dependent EMT induction. In summary, this work establishes an important role for the intracellular calcium signal in the induction of EMT in human breast cancer cells. Manipulation of calcium-signaling pathways controlling EMT induction in cancer cells may therefore be an important therapeutic strategy for preventing metastases.
Resumo:
Background Breast carcinoma is accompanied by changes in the acellular and cellular components of the microenvironment, the latter typified by a switch from fibroblasts to myofibroblasts. Methods: We utilised conditioned media cultures, Western blot analysis and immunocytochemistry to investigate the differential effects of normal mammary fibroblasts (NMFs) and mammary cancer-associated fibroblasts (CAFs) on the phenotype and behaviour of PMC42-LA breast cancer cells. NMFs were obtained from a mammary gland at reduction mammoplasty, and CAFs from a mammary carcinoma after resection. Results We found greater expression of myofibroblastic markers in CAFs than in NMFs. Medium from both CAFs and NMFs induced novel expression of α-smooth muscle actin and cytokeratin-14 in PMC42-LA organoids. However, although conditioned media from NMFs resulted in distribution of vimentin-positive cells to the periphery of PMC42-LA organoids, this was not seen with CAF-conditioned medium. Upregulation of vimentin was accompanied by a mis-localization of E-cadherin, suggesting a loss of adhesive function. This was confirmed by visualizing the change in active β-catenin, localized to the cell junctions in control cells/ cells in NMF-conditioned medium, to inactive β-catenin, localized to nuclei and cytoplasm in cells in CAF-conditioned medium. Conclusion We found no significant difference between the influences of NMFs and CAFs on PMC42-LA cell proliferation, viability, or apoptosis; significantly, we demonstrated a role for CAFs, but not for NMFs, in increasing the migratory ability of PMC42-LA cells. By concentrating NMF-conditioned media, we demonstrated the presence of factor(s) that induce epithelial-mesenchymal transition in NMF-conditioned media that are present at higher levels in CAF-conditioned media. Our in vitro results are consistent with observations in vivo showing that alterations in stroma influence the phenotype and behaviour of surrounding cells and provide evidence for a role for CAFs in stimulating cancer progression via an epithelial-mesenchymal transition. These findings have implications for our understanding of the roles of signalling between epithelial and stromal cells in the development and progression of mammary carcinoma.
Resumo:
Epithelial-mesenchymal plasticity in breast carcinoma encompasses the phenotypic spectrum whereby epithelial carcinoma cells within a primary tumor acquire mesenchymal features and re-epithelialize to form a cohesive secondary mass at a metastatic site. Such plasticity has implications in progression of breast carcinoma to metastasis, and will likely influence response to therapy. The transcriptional and epigenetic regulation of molecular and cellular processes that underlie breast cancer and result in characteristic changes in cell behavior can be monitored using an increasing array of marker proteins. Amongst these markers exists the potential for emergent prognostic, predictive and therapeutic targeting.