965 resultados para Energy purpose
Resumo:
The traditional operational and hazard control paradigm of an electrical installation has several issues pertaining to the diversity of equipment. A large maintenance inventory is a reason for concern for any manager, but the arc flash hazard is a particularly new phenomenon and the effects of equipment diversity on this phenomenon are even newer. The class of arc hazard can be increased, simply by changing the fuse link or circuit breaker manufacturer. Management pressure to operate as well as non-standard practices and installations are also partly responsible. The aim of this study is to take a typical situation in an industrial plant and to statistically simulate, by means of a dedicated software program, the fuse arc flash interruption performance of various manufacturers. The purpose of this study is to obtain a more objective indication of the influence of different fuse link manufacturers on arc flash incident energy. © 2011 IEEE.
Resumo:
This paper presents the analysis of some usual MPPT (Maximum Power Point Tracking) strategies intended for small wind energy conversion (up to 1kW) based on permanent magnet synchronous generators (PMSG), considering the stand-alone application for a novel buck-boost integrated inverter. Each MPPT method is analytically introduced and then it is simulated using MatLab/Simulink considering standard conditions of wind and also commercially available turbines and generators. The extracted power in each case is compared with the maximum available power, so the tracking factor is calculated for each method. Thus, the focus is on the application to improve the efficiency of stand-alone wind energy conversion systems (WECS) with battery chargers and AC load supplied by inverter. Therefore, for this purpose a novel single phase buck-boost integrated inverter is introduced. Finally, the main experimental results for the introduced inverter are presented. © 2011 IEEE.
Resumo:
The traditional operational and hazard control paradigm of an electrical installation has several issues pertaining to the diversity of equipment. A large maintenance inventory is a reason for concern for any manager, but the arc-flash hazard is a particularly new phenomenon, and the effects of equipment diversity on this phenomenon are even newer. The class of arc hazard can be simply increased by changing the fuse link or circuit breaker manufacturer. Management pressure to operate as well as nonstandard practices and installations are also partly responsible. The aim of this article is to take a typical situation in an industrial plant and to statistically simulate, by means of a dedicated software program, the fuse arc-flash interruption performance of various manufacturers. The purpose of this article is to obtain a more objective indication of the influence of different fuse link manufacturers on arc-flash incident energy. © 1975-2012 IEEE.
Resumo:
The growing demand for electrical power and the limited capital invested to provide this power is forcing countries like Brazil to search for new alternatives for electrical power generation. The purpose of this paper is to present a technical and economic study on a 15 kW solar plant installed in an isolated community, highlighting the importance of the need for financial subsidy from the government. It evaluates the importance of parameters such as the annual interest rate, specific investment, the marginal cost of expanding the electrical power supply and the government subsidy on amortization time of capital invested. © 2012 Elsevier Ltd All rights reserved.
Resumo:
The purpose of this study was to quantify energy expenditure (EE) during multiple sets of leg press (LP) and bench press (BP) exercises in 10 males with at least 1 yr of resistance training (RT). The subjects underwent two sessions to determine 1 repetition maximum (1RM) on the BP and LP and one protocol consisting of a warm up and 4 sets for 10 repetitions at 70% 1RM with a 3-min rest period between sets for each exercise. Energy expenditure was calculated as the sum of oxygen uptake (aerobic component), EPOC, and lactate production (anaerobic component). There were no significant differences in EE between exercises for sets 1 to 4 and the total energy expended. However, statistical analysis revealed a significant difference (P<0.05) between exercises in RT economy (BP, 0.0206 ± 0.0044 kcal·kg-1 vs. LP, 0.0051 ± 0.0015 kcal·kg-1). Within exercise comparison showed set 4 was significantly different from sets 1 and 3 for BP, and for LP a significant difference was found between set 4 and sets 1, 2 and 3. Our results point to an increase in EE during multiple sets at 70% 1RM and show that in spite of the difference in muscle mass involved and total work done during each type of exercise, EE was not different due to greater economy during the LP.
Resumo:
The purpose of this paper is to present the application of a three-phase harmonic propagation analysis time-domain tool, using the Norton model to approach the modeling of non-linear loads, making the harmonics currents flow more appropriate to the operation analysis and to the influence of mitigation elements analysis. This software makes it possible to obtain results closer to the real distribution network, considering voltages unbalances, currents imbalances and the application of mitigation elements for harmonic distortions. In this scenario, a real case study with network data and equipments connected to the network will be presented, as well as the modeling of non-linear loads based on real data obtained from some PCCs (Points of Common Coupling) of interests for a distribution company.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Previous research on energy requirements of female Saanen goats, using the factorial approach, has not considered the specific requirements for maintenance and growth during the pubertal phase. Thus, the purpose of this study was to estimate energy requirements for maintenance (Trial 1) and growth (Trial 2) of non-pregnant and non-lactating female Saanen goats at the pubertal phase from 30 to 45 kg. In Trial 1, the net energy requirements for maintenance (NEm ) were estimated using 18 female Saanen goats randomly assigned to three levels of intake: ad libitum, and 70% and 40% of ad libitum intake. These animals were pair-fed in six slaughter groups, each consisting of one animal for each level of intake. In Trial 2, the net energy requirements for growth (NEg ) were estimated using 18 female Saanen goats, which were fed ad libitum and slaughtered at targeted BW of 30, 38 and 45 kg. The NEm was 52 kcal/kg(0.75) of BW. The NEg increased from 3.5 to 4.7 Mcal/kg of BW gain as BW increased from 30 to 45 kg. Our results suggest that the guidelines of the major feeding systems for the entire growth phase may not be adequate for females at pubertal phase.
Resumo:
This paper presents the results of a study on carbothermal reduction of iron ore made under the microwave field in equipment specially developed for this purpose. The equipment allows the control of radiated and reflected microwave power, and therefore measures the microwave energy actually applied to the load in the reduction process. It also allows performing energy balances and determining the reaction rate with high levels of confidence by simultaneously measuring temperature and mass of the material upon reduction with high reproducibility. We used a microwave generator of 2.45?GHz with variable power up to 3000?W. Self-reducing pellets under argon atmosphere, containing iron ore and petroleum coke, with 3.5?g of mass and 15?mm of diameter were declined. We obtained the kinetic curves of reduction of iron ore and of energy consumption to the process in the maximum electric field, in the maximum magnetic field and at different values of power/mass. The data allow analyzing how the microwave energy was actually consumed in the reduction of ore.
Resumo:
The purpose of this study was to investigate energy system contributions and energy costs in combat situations. The sample consisted of 10 male taekwondo athletes (age: 21 +/- 6 years old; height: 176.2 +/- 5.3 cm; body mass: 67.2 +/- 8.9 kg) who compete at the national or international level. To estimate the energy contributions, and total energy cost of the fights, athletes performed a simulated competition consisting of three 2 min rounds with a 1 min recovery between each round. The combats were filmed to quantify the actual time spent fighting in each round. The contribution of the aerobic (WAER), anaerobic alactic (W-PCR), and anaerobic lactic (Wleft perpendicularLA-right perpendicular) energy systems was estimated through the measurement of oxygen consumption during the activity, the fast component of excess post-exercise oxygen consumption, and the change in blood lactate concentration in each round, respectively. The mean ratio of high intensity actions to moments of low intensity (steps and pauses) was similar to 1:7. The W-AER, W-PCR and (Wleft perpendicularLA-right perpendicular) system contributions were estimated as 120 +/- 22 kJ (66 +/- 6%), 54 +/- 21 kJ (30 +/- 6%), 8.5 kJ (4 +/- 2%), respectively. Thus, training sessions should be directed mainly to the improvement of the anaerobic alactic system (responsible by the highintensity actions), and of the aerobic system (responsible by the recovery process between high- intensity actions).
Resumo:
Evapotranspiration (ET) plays an important role in global climate dynamics and in primary production of terrestrial ecosystems; it represents the mass and energy transfer from the land to atmosphere. Limitations to measuring ET at large scales using ground-based methods have motivated the development of satellite remote sensing techniques. The purpose of this work is to evaluate the accuracy of the SEBAL algorithm for estimating surface turbulent heat fluxes at regional scale, using 28 images from MODIS. SEBAL estimates are compared with eddy-covariance (EC) measurements and results from the hydrological model MGB-IPH. SEBAL instantaneous estimates of latent heat flux (LE) yielded r(2) = 0.64 and r(2) = 0.62 over sugarcane croplands and savannas when compared against in situ EC estimates. At the same sites, daily aggregated estimates of LE were r(2) = 0.76 and r(2) = 0.66, respectively. Energy balance closure showed that turbulent fluxes over sugarcane croplands were underestimated by 7% and 9% over savannas. Average daily ET from SEBAL is in close agreement with estimates from the hydrological model for an overlay of 38,100 km(2) (r(2) = 0.88). Inputs to which the algorithm is most sensitive are vegetation index (NDVI), gradient of temperature (dT) to compute sensible heat flux (H) and net radiation (Re). It was verified that SEBAL has a tendency to overestimate results both at local and regional scales probably because of low sensitivity to soil moisture and water stress. Nevertheless the results confirm the potential of the SEBAL algorithm, when used with MODIS images for estimating instantaneous LE and daily ET from large areas.
Resumo:
In the early 1970 the community has started to realize that have as a main principle the industry one, with the oblivion of the people and health conditions and of the world in general, it could not be a guideline principle. The sea, as an energy source, has the characteristic of offering different types of exploitation, in this project the focus is on the wave energy. Over the last 15 years the Countries interested in the renewable energies grew. Therefore many devices have came out, first in the world of research, then in the commercial one; these converters are able to achieve an energy transformation into electrical energy. The purpose of this work is to analyze the efficiency of a new wave energy converter, called WavePiston, with the aim of determine the feasibility of its actual application in different wave conditions: from the energy sea state of the North Sea, to the more quiet of the Mediterranean Sea. The evaluation of the WavePiston is based on the experimental investigation conducted at the University of Aalborg, in Denmark; and on a numerical modelling of the device in question, to ascertain its efficiency regardless the laboratory results. The numerical model is able to predict the laboratory condition, but it is not yet a model which can be used for any installation, in fact no mooring or economical aspect are included yet. È dai primi anni del 1970 che si è iniziato a capire che il solo principio dell’industria con l’incuranza delle condizioni salutari delle persone e del mondo in generale non poteva essere un principio guida. Il mare, come fonte energetica, ha la caratteristica di offrire diverse tipologie di sfruttamento, in questo progetto è stata analizzata l’energia da onda. Negli ultimi 15 anni sono stati sempre più in aumento i Paesi interessati in questo ambito e di conseguenza, si sono affacciati, prima nel mondo della ricerca, poi in quello commerciale, sempre più dispositivi atti a realizzare questa trasformazione energetica. Di tali convertitori di energia ondosa ne esistono diverse classificazioni. Scopo di tale lavoro è analizzare l’efficienza di un nuovo convertitore di energia ondosa, chiamato WavePiston, al fine si stabilire la fattibilità di una sua reale applicazione in diverse condizioni ondose: dalle più energetiche del Mare del Nord, alle più quiete del Mar Mediterraneo. La valutazione sul WavePiston è basata sullo studio sperimentale condotto nell’Università di Aalborg, in Danimarca; e su di una modellazione numerica del dispositivo stesso, al fine di conoscerne l’efficienza a prescindere dalla possibilità di avere risultati di laboratorio. Il modello numerico è in grado di predirre le condizioni di laboratorio, ma non considera ancora elementi come gli ancoraggi o valutazione dei costi.
Resumo:
The research activity described in this thesis is focused mainly on the study of finite-element techniques applied to thermo-fluid dynamic problems of plant components and on the study of dynamic simulation techniques applied to integrated building design in order to enhance the energy performance of the building. The first part of this doctorate thesis is a broad dissertation on second law analysis of thermodynamic processes with the purpose of including the issue of the energy efficiency of buildings within a wider cultural context which is usually not considered by professionals in the energy sector. In particular, the first chapter includes, a rigorous scheme for the deduction of the expressions for molar exergy and molar flow exergy of pure chemical fuels. The study shows that molar exergy and molar flow exergy coincide when the temperature and pressure of the fuel are equal to those of the environment in which the combustion reaction takes place. A simple method to determine the Gibbs free energy for non-standard values of the temperature and pressure of the environment is then clarified. For hydrogen, carbon dioxide, and several hydrocarbons, the dependence of the molar exergy on the temperature and relative humidity of the environment is reported, together with an evaluation of molar exergy and molar flow exergy when the temperature and pressure of the fuel are different from those of the environment. As an application of second law analysis, a comparison of the thermodynamic efficiency of a condensing boiler and of a heat pump is also reported. The second chapter presents a study of borehole heat exchangers, that is, a polyethylene piping network buried in the soil which allows a ground-coupled heat pump to exchange heat with the ground. After a brief overview of low-enthalpy geothermal plants, an apparatus designed and assembled by the author to carry out thermal response tests is presented. Data obtained by means of in situ thermal response tests are reported and evaluated by means of a finite-element simulation method, implemented through the software package COMSOL Multyphysics. The simulation method allows the determination of the precise value of the effective thermal properties of the ground and of the grout, which are essential for the design of borehole heat exchangers. In addition to the study of a single plant component, namely the borehole heat exchanger, in the third chapter is presented a thorough process for the plant design of a zero carbon building complex. The plant is composed of: 1) a ground-coupled heat pump system for space heating and cooling, with electricity supplied by photovoltaic solar collectors; 2) air dehumidifiers; 3) thermal solar collectors to match 70% of domestic hot water energy use, and a wood pellet boiler for the remaining domestic hot water energy use and for exceptional winter peaks. This chapter includes the design methodology adopted: 1) dynamic simulation of the building complex with the software package TRNSYS for evaluating the energy requirements of the building complex; 2) ground-coupled heat pumps modelled by means of TRNSYS; and 3) evaluation of the total length of the borehole heat exchanger by an iterative method developed by the author. An economic feasibility and an exergy analysis of the proposed plant, compared with two other plants, are reported. The exergy analysis was performed by considering the embodied energy of the components of each plant and the exergy loss during the functioning of the plants.
Resumo:
Despite intensive research during the last decades, thetheoreticalunderstanding of supercooled liquids and the glasstransition is stillfar from being complete. Besides analytical investigations,theso-called energy-landscape approach has turned out to beveryfruitful. In the literature, many numerical studies havedemonstratedthat, at sufficiently low temperatures, all thermodynamicquantities can be predicted with the help of the propertiesof localminima in the potential-energy-landscape (PEL). The main purpose of this thesis is to strive for anunderstanding ofdynamics in terms of the potential energy landscape. Incontrast to the study of static quantities, this requirestheknowledge of barriers separating the minima.Up to now, it has been the general viewpoint that thermallyactivatedprocesses ('hopping') determine the dynamics only belowTc(the critical temperature of mode-coupling theory), in thesense that relaxation rates follow from local energybarriers.As we show here, this viewpoint should be revisedsince the temperature dependence of dynamics is governed byhoppingprocesses already below 1.5Tc.At the example of a binary mixture of Lennard-Jonesparticles (BMLJ),we establish a quantitative link from the diffusioncoefficient,D(T), to the PEL topology. This is achieved in three steps:First, we show that it is essential to consider wholesuperstructuresof many PEL minima, called metabasins, rather than singleminima. Thisis a consequence of strong correlations within groups of PELminima.Second, we show that D(T) is inversely proportional to theaverageresidence time in these metabasins. Third, the temperaturedependenceof the residence times is related to the depths of themetabasins, asgiven by the surrounding energy barriers. We further discuss that the study of small (but not toosmall) systemsis essential, in that one deals with a less complex energylandscapethan in large systems. In a detailed analysis of differentsystemsizes, we show that the small BMLJ system consideredthroughout thethesis is free of major finite-size-related artifacts.