Second law analysis and simulation techniques for the energy optimization of buildings


Autoria(s): Terlizzese, Tiziano
Contribuinte(s)

Zanchini, Enzo

Data(s)

17/05/2010

Resumo

The research activity described in this thesis is focused mainly on the study of finite-element techniques applied to thermo-fluid dynamic problems of plant components and on the study of dynamic simulation techniques applied to integrated building design in order to enhance the energy performance of the building. The first part of this doctorate thesis is a broad dissertation on second law analysis of thermodynamic processes with the purpose of including the issue of the energy efficiency of buildings within a wider cultural context which is usually not considered by professionals in the energy sector. In particular, the first chapter includes, a rigorous scheme for the deduction of the expressions for molar exergy and molar flow exergy of pure chemical fuels. The study shows that molar exergy and molar flow exergy coincide when the temperature and pressure of the fuel are equal to those of the environment in which the combustion reaction takes place. A simple method to determine the Gibbs free energy for non-standard values of the temperature and pressure of the environment is then clarified. For hydrogen, carbon dioxide, and several hydrocarbons, the dependence of the molar exergy on the temperature and relative humidity of the environment is reported, together with an evaluation of molar exergy and molar flow exergy when the temperature and pressure of the fuel are different from those of the environment. As an application of second law analysis, a comparison of the thermodynamic efficiency of a condensing boiler and of a heat pump is also reported. The second chapter presents a study of borehole heat exchangers, that is, a polyethylene piping network buried in the soil which allows a ground-coupled heat pump to exchange heat with the ground. After a brief overview of low-enthalpy geothermal plants, an apparatus designed and assembled by the author to carry out thermal response tests is presented. Data obtained by means of in situ thermal response tests are reported and evaluated by means of a finite-element simulation method, implemented through the software package COMSOL Multyphysics. The simulation method allows the determination of the precise value of the effective thermal properties of the ground and of the grout, which are essential for the design of borehole heat exchangers. In addition to the study of a single plant component, namely the borehole heat exchanger, in the third chapter is presented a thorough process for the plant design of a zero carbon building complex. The plant is composed of: 1) a ground-coupled heat pump system for space heating and cooling, with electricity supplied by photovoltaic solar collectors; 2) air dehumidifiers; 3) thermal solar collectors to match 70% of domestic hot water energy use, and a wood pellet boiler for the remaining domestic hot water energy use and for exceptional winter peaks. This chapter includes the design methodology adopted: 1) dynamic simulation of the building complex with the software package TRNSYS for evaluating the energy requirements of the building complex; 2) ground-coupled heat pumps modelled by means of TRNSYS; and 3) evaluation of the total length of the borehole heat exchanger by an iterative method developed by the author. An economic feasibility and an exergy analysis of the proposed plant, compared with two other plants, are reported. The exergy analysis was performed by considering the embodied energy of the components of each plant and the exergy loss during the functioning of the plants.

Formato

application/pdf

Identificador

http://amsdottorato.unibo.it/2743/1/terlizzese_tiziano_tesi.pdf

urn:nbn:it:unibo-2059

Terlizzese, Tiziano (2010) Second law analysis and simulation techniques for the energy optimization of buildings, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Ingegneria energetica, nucleare e del controllo ambientale <http://amsdottorato.unibo.it/view/dottorati/DOT325/>, 22 Ciclo. DOI 10.6092/unibo/amsdottorato/2743.

Idioma(s)

en

Publicador

Alma Mater Studiorum - Università di Bologna

Relação

http://amsdottorato.unibo.it/2743/

Direitos

info:eu-repo/semantics/openAccess

Palavras-Chave #ING-IND/10 Fisica tecnica industriale
Tipo

Tesi di dottorato

NonPeerReviewed