838 resultados para Energy Harvesting, Convertitori di potenza, Maximum Power Point Tracking, Applicazioni low power
Resumo:
We study a sensor node with an energy harvesting source. The generated energy can be stored in a buffer. The sensor node periodically senses a random field and generates a packet. These packets are stored in a queue and transmitted using the energy available at that time. We obtain energy management policies that are throughput optimal, i.e., the data queue stays stable for the largest possible data rate. Next we obtain energy management policies which minimize the mean delay in the queue. We also compare performance of several easily implementable sub-optimal energy management policies. A greedy policy is identified which, in low SNR regime, is throughput optimal and also minimizes mean delay.
Resumo:
Researchers can use bond graph modeling, a tool that takes into account the energy conservation principle, to accurately assess the dynamic behavior of wireless sensor networks on a continuous basis.
Resumo:
Network life time maximization is becoming an important design goal in wireless sensor networks. Energy harvesting has recently become a preferred choice for achieving this goal as it provides near perpetual operation. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over a fading AWGN channel with perfect/no channel state information provided at the transmitter. We obtain an achievable rate when there are inefficiencies in energy storage and the capacity when energy is spent in activities other than transmission.
Resumo:
Energy harvesting sensor networks provide near perpetual operation and reduce carbon emissions thereby supporting `green communication'. We study such a sensor node powered with an energy harvesting source. We obtain energy management policies that are throughput optimal. We also obtain delay-optimal policies. Next we obtain the Shannon capacity of such a system. Further we combine the information theoretic and queuing theoretic approaches to obtain the Shannon capacity of an energy harvesting sensor node with a data queue. Then we generalize these results to models with fading and energy consumption in activities other than transmission.
Resumo:
Sensor nodes with energy harvesting sources are gaining popularity due to their ability to improve the network life time and are becoming a preferred choice supporting `green communication'. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over an AWGN channel and show that the capacity achieving energy management policies are related to the throughput optimal policies. We also obtain the capacity when energy conserving sleep-wake modes are supported and an achievable rate for the system with inefficiencies in energy storage.
Resumo:
Energy harvesting sensor (EHS) nodes provide an attractive and green solution to the problem of limited lifetime of wireless sensor networks (WSNs). Unlike a conventional node that uses a non-rechargeable battery and dies once it runs out of energy, an EHS node can harvest energy from the environment and replenish its rechargeable battery. We consider hybrid WSNs that comprise of both EHS and conventional nodes; these arise when legacy WSNs are upgraded or due to EHS deployment cost issues. We compare conventional and hybrid WSNs on the basis of a new and insightful performance metric called k-outage duration, which captures the inability of the nodes to transmit data either due to lack of sufficient battery energy or wireless fading. The metric overcomes the problem of defining lifetime in networks with EHS nodes, which never die but are occasionally unable to transmit due to lack of sufficient battery energy. It also accounts for the effect of wireless channel fading on the ability of the WSN to transmit data. We develop two novel, tight, and computationally simple bounds for evaluating the k-outage duration. Our results show that increasing the number of EHS nodes has a markedly different effect on the k-outage duration than increasing the number of conventional nodes.
Resumo:
We consider a Gaussian multiple access channel (GMAC) where the users are sensor nodes powered by energy harvesters. The energy harvesters may have finite or infinite buffer to store the harvested energy. First, we find the capacity region of a GMAC powered by transmit nodes with an infinite energy buffer. Next, we consider a GMAC with the transmitting nodes equipped with a finite energy buffer. Initially we assume perfect knowledge of the buffer state information at both the encoders and the decoder. We provide an achievable region for this case. We also generalize the achievable region when only partial information about buffer state is available at both the encoders and the decoder.
Resumo:
Energy harvesting sensor nodes are gaining popularity due to their ability to improve the network life time and are becoming a preferred choice supporting green communication. In this paper, we focus on communicating reliably over an additive white Gaussian noise channel using such an energy harvesting sensor node. An important part of this paper involves appropriate modeling of energy harvesting, as done via various practical architectures. Our main result is the characterization of the Shannon capacity of the communication system. The key technical challenge involves dealing with the dynamic (and stochastic) nature of the (quadratic) cost of the input to the channel. As a corollary, we find close connections between the capacity achieving energy management policies and the queueing theoretic throughput optimal policies.
Resumo:
Low resistance motion of liquids on a well-defined path is beneficial for several MEMS based applications including energy harvesting and switching. By eliminating the contact line we demonstrate low resistance motion of a liquid bulge on pre-wetted strips. The bulge appears on wetted strips due to a morphological instability. The wetted strip confines the mercury bulge and defines its path of motion. Resistance to initiate motion of the bulge was studied experimentally and compared to other cases. An electret based energy harvesting device using bulge motion has been fabricated and tested.
Resumo:
Piezoelectric systems are viewed as a promising approach to energy harvesting from environmental vibrations. The energy harvested from real vibration sources is usually difficult to estimate analytically. Therefore, it is hard to optimise the associated energy harvesting system. This work investigates the optimisation of a piezoelectric cantilever system using a genetic algorithm based approach with numerical simulations. The genetic algorithm globally considers the effects of each parameter to produce an optimal frequency response to scavenge more energy from the real vibrations while the conventional sinusoidal based method can only optimise the resistive load for a given resonant frequency. Experimental acceleration data from the vibrations of a vehicle-excited manhole cover demonstrates that the optimised harvester automatically selects the right frequency and also synchronously optimises the damper and the resistive load. This method shows great potential for optimizing the energy harvesting systems with real vibration data. ©2009 IEEE.