661 resultados para Emulsion copolymerization
Resumo:
160 p.
Resumo:
The industrial PhD project presented here is part of the R&D strategies of the Lipinutragen company. The innovation brought by the company concerns nutrilipidomics, i.e. the correlation between the lipid composition (in fatty acids) of the cell membrane and lipid-based nutraceuticals, especially starting from the well-known dependence of the lipid composition on the intake of essential fats, omega- 6 and omega-3 polyunsaturated fatty acids. Among the results obtained from the membrane lipidomic profiles, the case of autistic subjects is here highlighted, showing the significant deficiency of docosahexaenoic acid (DHA). The activity during the PhD was devoted to the nutrilipidomic approach. Part of the activities were devoted to scientific research in lipidomics: a) the study of lipidomic profiles in the frame of two collaboration projects: one with the group of Dr. I. Tueros at AZTI, Bilbao, regading obese population, and the other one regarding seed germination with the changes of the fatty acid profiles with the group of prof. A. Balestrazzi of the University of Parma; b) the liposome preparation for protection and lifetime prolongation of the peptide somatostatin, which was an important premise to the formulation of the DHA-containing microemulsion. The activities was also focused on the development of DHA-containing nutraceutical formulations in the form of emulsion, overcoming the difficulty of the capsule ingestion, to be administered orally. The work pointed to study the combination of active ingredients, based on the previous know-how regarding the bioavailability for the cell membrane incorporation. The ingredients of the formulation were studied and tested in vitro for the bioavailability of DHA to be incorporated in the cell membranes of different types of cultured cells. Part of this study is covered by non-disclosure agreement since it belongs to the know-how of Lipinutragen.
Resumo:
Insulin was used as model protein to developed innovative Solid Lipid Nanoparticles (SLNs) for the delivery of hydrophilic biotech drugs, with potential use in medicinal chemistry. SLNs were prepared by double emulsion with the purpose of promoting stability and enhancing the protein bioavailability. Softisan(®)100 was selected as solid lipid matrix. The surfactants (Tween(®)80, Span(®)80 and Lipoid(®)S75) and insulin were chosen applying a 2(2) factorial design with triplicate of central point, evaluating the influence of dependents variables as polydispersity index (PI), mean particle size (z-AVE), zeta potential (ZP) and encapsulation efficiency (EE) by factorial design using the ANOVA test. Therefore, thermodynamic stability, polymorphism and matrix crystallinity were checked by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD), whereas the effect of toxicity of SLNs was check in HepG2 and Caco-2 cells. Results showed a mean particle size (z-AVE) width between 294.6 nm and 627.0 nm, a PI in the range of 0.425-0.750, ZP about -3 mV, and the EE between 38.39% and 81.20%. After tempering the bulk lipid (mimicking the end process of production), the lipid showed amorphous characteristics, with a melting point of ca. 30 °C. The toxicity of SLNs was evaluated in two distinct cell lines (HEPG-2 and Caco-2), showing to be dependent on the concentration of particles in HEPG-2 cells, while no toxicity in was reported in Caco-2 cells. SLNs were stable for 24 h in in vitro human serum albumin (HSA) solution. The resulting SLNs fabricated by double emulsion may provide a promising approach for administration of protein therapeutics and antigens.
Resumo:
Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.
Resumo:
The aim of the present work was to produce a cationic solid lipid nanoparticle (SLN) as non-viral vector for protein delivery. Cationic SLN were produced by double emulsion method, composed of softisan(®) 100, cetyltrimethylammonium bromide (CTAB), Tween(®) 80, Span(®) 80, glycerol and lipoid(®) S75 loading insulin as model protein. The formulation was characterized in terms of mean hydrodynamic diameter (z-ave), polydispersity index (PI), zeta potential (ZP), stability during storage time, stability after lyophilization, effect of toxicity and transfection ability in HeLa cells, in vitro release profile and morphology. SLN were stable for 30days and showed minimal changes in their physicochemical properties after lyophilization. The particles exhibited a relatively slow release, spherical morphology and were able to transfect HeLa cells, but toxicity remained an obstacle. Results suggest that SLN are nevertheless promising for delivery of proteins or nucleic acids for gene therapy.
Resumo:
Bologna-type sausages were produced with 50% of their pork back-fat content replaced with gels elaborated with different ratios of pork skin, water, and amorphous cellulose (1:1:0, 1:1:0.1, 1:1:0.2, 1:1:0.3, and 1:1:0.4). The impact of such replacement on the physico-chemical characteristics and the consumer sensory profiling was evaluated. The modified treatments had 42% less fat, 18% more protein, and 8% more moisture than the control group. Treatments with amorphous cellulose had a lower cooking loss and higher emulsion stability. High amorphous cellulose content (1:1:0.3 and 1:1:0.4) increased hardness, gumminess, and chewiness. The gel formulated with the ratio of 1:1:0.2 (pork skin: water: amorphous cellulose gel) provided a sensory sensation similar to that provided by fat and allowed products of good acceptance to be obtained. Therefore, a combination of pork skin and amorphous cellulose is useful in improving technological quality and producing healthier and sensory acceptable bologna-type sausages.
Resumo:
To compare the hemodynamic changes following two different lipid emulsion therapies after bupivacaine intoxication in swines. Large White pigs were anesthetized with thiopental, tracheal intubation performed and mechanical ventilation instituted. Hemodynamic variables were recorded with invasive pressure monitoring and pulmonary artery catheterization (Swan-Ganz catheter). After a 30-minute resting period, 5 mg.kg-1 of bupivacaine by intravenous injection was administered and new hemodynamic measures were performed 1 minute later; the animals were than randomly divided into three groups and received 4 ml.kg-1 of one of the two different lipid emulsion with standard long-chaim triglyceride, or mixture of long and medium-chain triglyceride, or saline solution. Hemodynamic changes were then re-evaluated at 5, 10, 15, 20 and 30 minutes. Bupivacaine intoxication caused fall in arterial blood pressure, cardiac index, ventricular systolic work index mainly and no important changes in vascular resistances. Both emulsion improved arterial blood pressure mainly increasing vascular resistance since the cardiac index had no significant improvement. On the systemic circulation the hemodynamic results were similar with both lipid emulsions. Both lipid emulsions were efficient and similar options to reverse hypotension in cases of bupivacaine toxicity.
Resumo:
Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.
Resumo:
Alginate microparticles were prepared by an emulsion method aiming oral controlled release of antigens to fish. The effects of emulsification temperature and impeller type on particle morphology, average diameter, and size distribution were evaluated. Microparticles contaning formalin-killed Flavobacterium columnare cells (a model antigen) were prepared and characterized regarding bacterial release and particle stability when exposed to Nile tilapia (Oreochromis niloticus) typical gastrointestinal conditions. This methodology allowed the production of microparticles containing up to 14.3 g/L of bacterin, stable at a pH range from 2.0 to 9.0 for 12 h and smaller than 35 μm.
Resumo:
One of the main objectives of applying edible coatings on fruits surface is to create a protective film to reduce weight loss due to evaporation and transpiration and also to decrease the risk of fruit rot caused by environmental contamination, in order to improve the visual aspect. Therefore, it is possible to increase shelf life, and decrease post harvest losses. Persimmon is a much appreciated fruit, with high potential for export, but sensitive to handling and storage. This study aimed to evaluate the effect of applying the edible coating Megh Wax ECF-124 (18% of active composts, consisting of emulsion of carnauba wax, anionic surfactant, preservative and water) produced by Megh Industry and Commerce Ltda in three different concentrations (25, 50 and 100%) on post harvest quality of 'Fuyu' persimmon stored for 14 days. The attributes evaluated for quality were: firmness, pH, acidity, soluble solids, weight loss and color. The results showed that application of carnauba wax in different concentrations was effective on decreasing weight loss of persimmon cv. Fuyu and maintenance of color aspects. Treatment at lower concentration, 25%, showed lower rate of discharge, but high concentrations showed lower values of mass loss. Carnauba wax application showed a high potential for use on postharvest conservation, and can be applied together with other technologies, helping to maintain quality for export.
Resumo:
β-Casein and sodium caseinate stabilized emulsions were produced and had their rheological properties investigated as a function of the nature of the oil phase, ionic strength and pH. Oil phases of distinct structural characteristics, namely decane and vegetable oil of high triglyceride content, were assayed. The former was much more effectively emulsified than the latter. Effects of pH and ionic strength were minor. Emulsion rheological properties were strikingly distinct in each case, with viscoelastic, solid-like structures being formed with decane (G' >> G"), differently from what is observed for samples containing triglycerides as the oil phase, in which viscoelasticity was not even apparent. The relevance of the spatial features of the oil phase structure in the development of the emulsion viscoelastic character is discussed. Factors responding for the system distinct behaviour possibly reside at the emulsion droplet interface, unapproachable by optical microscopy, rather than on aspects related to particle size or shape.
Resumo:
Emulsões estabilizadas por 'beta'-caseína e sódio caseinato tiveram suas propriedades reológicas investigadas em função da natureza da fase oleosa, da força iônica e do pH. Fases oleosas de características estruturais distintas, a saber, decano e óleos vegetais de alto teor triglicerídico, foram ensaiadas. A emulsificação dos sistemas contendo decano foi significativamente mais efetiva do que aquela das amostras contendo triglicérides. Efeitos de pH e força iônica mostraram-se relativamente pouco importantes sobre a capacidade emulsificante da proteína. As propriedades reológicas foram marcadamente distintas em cada caso, com estruturas de caráter sólido (G' G") sendo produzidas com decano, diferentemente do que foi observado para amostras contendo triglicérides, nas quais a viscoelasticidade não foi nem mesmo aparente. A relevância de aspectos espaciais da estrutura da fase oleosa no desenvolvimento do caráter viscoelástico é discutida. Propõe-se que os fatores responsáveis pelo comportamento distinto observado residam possivelmente na interface gotícula/meio dispersante, inacessível por microscopia óptica, e guardam pouca relação com tamanho ou forma da gotícula.
Resumo:
Purpose: Use of lipid nanoemulsions as carriers of drugs for therapeutic or diagnostic purposes has been increasingly studied. Here, it was tested whether modifications of core particle constitution could affect the characteristics and biologic properties of lipid nanoemulsions. Methods: Three nanoemulsions were prepared using cholesteryl oleate, cholesteryl stearate, or cholesteryl linoleate as main core constituents. Particle size, stability, pH, peroxidation of the nanoemulsions, and cell survival and uptake by different cell lines were evaluated. Results: It was shown that cholesteryl stearate nanoemulsions had the greatest particle size and all three nanoemulsions were stable during the 237-day observation period. The pH of the three nanoemulsion preparations tended to decrease over time, but the decrease in pH of cholesteryl stearate was smaller than that of cholesteryl oleate and cholesteryl linoleate. Lipoperoxidation was greater in cholesteryl linoleate than in cholesteryl oleate and cholesteryl stearate. After four hours' incubation of human umbilical vein endothelial cells (HUVEC) with nanoemulsions, peroxidation was minimal in the presence of cholesteryl oleate and more pronounced with cholesteryl linoleate and cholesteryl stearate. In contrast, macrophage incubates showed the highest peroxidation rates with cholesteryl oleate. Cholesteryl linoleate induced the highest cell peroxidation rates, except in macrophages. Uptake of cholesteryl oleate nanoemulsion by HUVEC and fibroblasts was greater than that of cholesteryl linoleate and cholesteryl stearate. Uptake of the three nanoemulsions by monocytes was equal. Uptake of cholesteryl oleate and cholesteryl linoleate by macrophages was negligible, but macrophage uptake of cholesteryl stearate was higher. In H292 tumor cells, cholesteryl oleate showed the highest uptakes. HUVEC showed higher survival rates when incubated with cholesteryl stearate and smaller survival with cholesteryl linoleate. H292 survival was greater with cholesteryl stearate. Conclusion: Although all three nanoemulsion types were stable for a long period, considerable differences were observed in size, oxidation status, and cell survival and nanoemulsion uptake in all tested cell lines. Those differences may be helpful in protocol planning and interpretation of data from experiments with lipid nanoemulsions.
Resumo:
Background: Leukotriene B(4) (LTB(4)) is a potent inflammatory mediator that also stimulates the immune response. In addition, it promotes polymorphonuclear leukocyte phagocytosis, chemotaxis, chemokinesis and modulates cytokines release. Regarding chemical instability of the leukotriene molecule, in the present study we assessed the immunomodulatory activities conferred by LTB(4) released from microspheres (MS). A previous oil-in-water emulsion solvent extraction-evaporation method was chosen to prepare LTB(4)-loaded MS. Results: In the mice cremasteric microcirculation, intraescrotal injection of 0.1 ml of LTB(4)-loaded MS provoked significant increases in leukocyte rolling flux, adhesion and emigration besides significant decreases in the leukocyte rolling velocity. LTB(4)-loaded MS also increase peroxisome proliferator-activated receptor-alpha (PPAR alpha) expression by murine peritoneal macrophages and stimulate them to generate nitrite levels. Monocyte chemoattractant protein-I (MCP-I) and nitric oxide (NO) productions were also increased when human umbilical vein and artery endothelial cells (HUVECs and HUAECs, respectively) were stimulated with LTB(4)-loaded MS. Conclusion: LTB(4)-loaded MS preserve the biological activity of the encapsulated mediator indicating their use as a new strategy to modulate cell activation, especially in the innate immune response.