954 resultados para Electron Microscope
Resumo:
Defects and morphologies are presented in this paper as revealed with transmission electron microscope (TEM) in the In(0.8)G(0.2)As/InAlAs heterostructure on InP(001) for high-electron-mobility transistors application. Most of the misfit dislocation lines are 60 degrees type and they deviate < 110 > at some angles to either side according to their Burges vectors. The misfit dislocation lines deviating [-110] are divided into two types according to whether their edge component b(eg) of Burges vectors in [001] pointing up or down. If b(eg) points up in the growth direction, there is the local periodical strain modulation along the dislocation line. In addition, the periodical modulation in height along [-110] on the In(0.8)G(0.2)As surface is observed, this surface morphology is not associated with the relaxation of mismatch strain.
Resumo:
We report on the first study of N+ -implanted silicon on insulator by energy-filtered imaging using an Opton electron microscope CEM 902 equipped Castaing-Henry electron optical system as a spectrometer. The inelastic images, energy window set at DELTA-E = 16 eV and DELTA-E = 25 eV according to plasmon energy loss of crystal Si and of silicon nitride respectively, give much structure information. The interface between the top silicon layer and the upper silicon nitride layer can be separated into two sublayers.
Resumo:
Single chain single crystals (SCSC) of gutta percha (GP) were prepared by a dilute-solution spraying method. Electron diffraction (ED) patterns revealed that the single chain single crystal was of a new crystalline modification, the delta form. The images of SCSC of GP obtained with a high resolution electron microscope (HREM) showed a two dimensional periodic structure. Most of the images consisted of lattice fringes derived from the (001) zone. This is the first time that the single chain single crystal images of GP have been observed at a molecular level. Micrographs were image processed using optical filtering methods to improve the signal-to-noise ratio, and were compared with computer-generated simulations of the images. From the viewpoint of the defects seen in high resolution images, the crystal formation and melting processes are discussed. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
In the present paper a general analytic expression has been obtained and confirmed by a computer simulation which links the surface roughness of an object under study in an emission electron microscope and it's resolution. A quantitative derivation was made for the model case when there is a step on the object surface. It was shown that the resolution is deteriorated asymmetrically relative to the step. The effect sets a practical limit to the ultimate lateral resolution obtainable in an emission electron microscope.
Resumo:
Under investigation by emission electron microscopy, the shape and size of three-dimensional objects are distorted because of the appearance of a characteristic potential relief and a possible contact potential difference between the particles and the substrate. An estimation of these effects for spherical particles is made. It is shown that the apparent size of particles observed in an emission electron microscope (EEM) could be increased as well as decreased depending on the relation between the work functions of the particle and the substrate. The corresponding formulae are given and several possibilities are shown which permit us to determine from the EEM image the real size of particles and their work function relative to the substrate.
Resumo:
BACKGROUND: Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. METHODOLOGY: We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. CONCLUSION: We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.
Resumo:
This memoir recalls the instruments in the Electron Microscope Unit and the staff, students and visitors who used them. Accessory equipment is also described because much of it was innovative and built in the laboratory, also, much of the science would not have been possible without it. This publication includes 33 figures, 4 plates and 7 appendices. The appendices record that 54 MBA staff and 196 students and visitors have used the microscopes and that 413 titles have been published (to the end of 2006).
Resumo:
Ultrastructural investigations of eggs can be important in helping to understand embryonic development. There are few transmission electron microscope studies of marine arthropod eggs, however, as they have proved difficult to fix and infiltrate with resin. Here, we describe a modification of a standard method that allows the preparation of the quite different eggs of the marine copepod, Acartia tonsa and the lobster, Homarus gammarus, for transmission electron microscopy. By using double fixation and an extended resin infiltration time we obtained good preparations for electron microscopy. We anticipate that these modifications to the standard protocol will be widely applicable and useful for the study of the eggs and early developmental stages of many marine arthropod taxa. Les recherches sur l'ultrastructure des oeufs peuvent être importantes en aidant à comprendre le développement embryonnaire. Il existe cependant peu d'études en microscopie électronique à transmission sur les oeufs d'arthropodes marins, car il est difficile de les fixer et d'y infiltrer de la résine. Dans ce travail, nous décrivons une modification de la méthode standard, qui permet la préparation pour la microscopie électronique à transmission d'oeufs aussi différents que ceux du copépode marin Acartia tonsa et du homard Homarus gammarus. En utilisant une double fixation et un temps plus long d'infiltration de la résine, nous avons obtenu de bonnes préparations pour la microscopie électronique. Nous prévoyons que ces modifications du protocole standard seront largement applicables et utiles pour l'étude des oeufs et des premiers stades de développement de nombreux taxons d'arthropodes marins.
Resumo:
This paper follows previous X-ray diffraction work on crystallisation and phase transformation of electroless nickel–phosphorus deposits, concentrating on microstructural changes. Amorphous or nanocrystalline coatings, depending on their phosphorus content, were heat treated at temperatures between 100 and 500 °C for 1 h. Changes in microstructure after the heat treatment were examined using high-resolution field emission scanning electron microscope. Crystallisation and grain growth effects are observed, as well as some inherent defect structures in the coatings and their changes. These are compared with the previous X-ray diffraction work and in general, good agreement is observed. The complementary strength and weakness of the different characterisation techniques are discussed.
Resumo:
This paper reports image analysis methods that have been developed to study the microstructural changes of non-wovens made by the hydroentanglement process. The validity of the image processing techniques has been ascertained by applying them to test images with known properties. The parameters in preprocessing of the scanning electron microscope (SEM) images used in image processing have been tested and optimized. The fibre orientation distribution is estimated using fast Fourier transform (FFT) and Hough transform (HT) methods. The results obtained using these two methods are in good agreement. The HT method is more demanding in computational time compared with the Fourier transform (FT) method. However, the advantage of the HT method is that the actual orientation of the lines can be concluded directly from the result of the transform without the need for any further computation. The distribution of the length of the straight fibre segments of the fabrics is evaluated by the HT method. The effect of curl of the fibres on the result of this evaluation is shown.
Resumo:
The scanning electron microscope (SEM) has been a major tool in detailed morphological observations of plant parasitic nematodes during the last 30 years, efficiently complementing light microscopical (LM) studies. Nematodes are extremely difficult to observe and characterize due to their small size (aprox. 1 mm long) and paucity of morphological characters, so detailed surface observations of several organs and nematode regions are of the highest value. Among plant parasitic nematodes, one of the most devastating species is the “pinewood nematode” (PWN), Bursaphelenchus xylophilus, which has been a major problem for forest species, and in particular pines, in Asia (Japan, China, Korea) and has been recently detected in the European Union (Portugal). B. xylophilus belongs to a closely related, morphologically similar group of species, within the genus Bursaphelenchus, and designated by the “xylophilus group”. SEM has become a crucial tool in observing several genital characters of males and females, such as male genital papillae, male copulatory spicules, female vulval flap and female genital papillae.s In this presentation, we will show how SEM has been utilized to observe and characterize the shape of the vulval flap, the presence/ absence of papillae near the flap, and confirm the presence and the arrangement of the male genital papillae. LM is also used in this work to show its value as a complementary tool to SEM, in both genital characteristics and other, general, characters of the genus Bursaphelenchus, such as the male bursa and cephalic region.
Resumo:
La reconstruction en deux étapes par expanseur et implant est la technique la plus répandue pour la reconstruction mammmaire post mastectomie. La formation d’une capsule périprothétique est une réponse physiologique universelle à tout corps étranger présent dans le corps humain; par contre, la formation d’une capsule pathologique mène souvent à des complications et par conséquent à des résultats esthétiques sous-optimaux. Le microscope électronique à balayage (MEB) est un outil puissant qui permet d’effectuer une évaluation sans pareille de la topographie ultrastructurelle de spécimens. Le premier objectif de cette thèse est de comparer le MEB conventionnel (Hi-Vac) à une technologie plus récente, soit le MEB environnemental (ESEM), afin de déterminer si cette dernière mène à une évaluation supérieure des tissus capsulaires du sein. Le deuxième objectif est d‘appliquer la modalité de MEB supérieure et d’étudier les modifications ultrastructurelles des capsules périprothétiques chez les femmes subissant différents protocoles d’expansion de tissus dans le contexte de reconstruction mammaire prothétique. Deux études prospectives ont été réalisées afin de répondre à nos objectifs de recherche. Dix patientes ont été incluses dans la première, et 48 dans la seconde. La modalité Hi-Vac s’est avérée supérieure pour l’analyse compréhensive de tissus capsulaires mammaires. En employant le mode Hi-Vac dans notre protocole de recherche établi, un relief 3-D plus prononcé à été observé autour des expanseurs BIOCELL® dans le groupe d’approche d’intervention retardée (6 semaines). Des changements significatifs n’ont pas été observés au niveau des capsules SILTEX® dans les groupes d’approche d’intervention précoce (2 semaines) ni retardée.
Resumo:
Tear and wear properties of short kevlar fiber, thermoplastic polcurethane (TPU) composite with respect to fiber loading-and fiber onentation has been studied and the fracture surfaces were examined under scanning electron microscope (SEM). Tear strength first decreased up to 20 phr fiber loading and then gradually increased with increasing fiber loading. Anisotropy in tear strength was evident beyond a fiber loading of 20 phr. Tear fracture surface of unfilled TPU showed sinusoidal folding characteristics of high strength matrix. At low fiber loading the tear failure was mainly due to fibermatrix failure whereas at higher fiber loading the failure occurred by fiber breakage. Abrasion loss shows a continuous rise with increasing fiber loading, the loss in the transverse orientation of fibers being higher than that in the longitudinal orientation. The abraded surface showed lone cracks and ridges parallel to the direction of abrasion indicating an abrasive wear mechanism. In the presence of fber the abrasion loss was mainly due to fiber low.
Resumo:
In the present investigation, a scanning electron microscopy analysis was performed to evaluate the effects of the topical application of ethylenediaminetetraacetic acid (EDTA) gel associated with Cetavlon (EDTAC) in removing the smear layer and exposing collagen fibers following root surface instrumentation. Twenty-eight teeth from adult humans, single rooted and scheduled for extraction due to periodontal reasons, were selected. Each tooth was submitted to manual (scaling and root planing) instrumentation alone or combined with ultrasonic instruments, with or without etching using a 24% EDTAC gel. Following extraction, specimens were processed and examined under a scanning electron microscope. A comparative morphological semi-quantitative analysis was performed; the intensity of the smear layer and the decalcification of cementum and dentinal surfaces were graded in 12 sets using an arbitrary scale ranging from 1 (area covered by a smear layer) to 4 (no smear layer). Root debridement with hand instruments alone or combined with ultrasonic instruments resulted in a similar smear layer covering the root surfaces. The smear layer was successfully removed from the surfaces treated with EDTAC, which exhibited numerous exposed dentinal tubules and collagen fibers. This study supports the hypothesis that manual instrumentation alone or instrumentation combined with ultrasonic instrumentation is unable to remove the smear layer, whereas the subsequent topical application of EDTAC gel effectively removes the smear layer, uncovers dentinal openings and exposes collagen fibers.
Resumo:
The Boyadjian et al dental wash technique provides, in certain contexts, the only chance to analyze and quantify the use of plants by past populations and is therefore an important milestone for the reconstruction of paleodiet. With this paper we present recent investigations and results upon the influence of this method on teeth. A series of six teeth from a three thousand years old Brazilian shellmound (Jabuticabeira II) was examined before and after dental wash. The main focus was documenting the alteration of the surfaces and microstructures. The status of all teeth were documented using macrophotography, optical light microscopy, and atmospheric Secondary Electron Microscopy (aSEM) prior and after applying the dental wash technique. The comparison of pictures taken before and after dental wash showed the different degrees of variation and damage done to the teeth but, also, provided additional information about microstructures, which have not been visible before. Consequently we suggest that dental wash should only be carried out, if absolutely necessary, after dental pathology, dental morphology and microwear studies have been accomplished. (C) 2010 Elsevier Ltd. All rights reserved.