347 resultados para Electromyographic
Resumo:
The aim of the present study was to advance the methodology and use of time series analysis to quantify dynamic structures in psychophysiological processes and thereby to produce information on spontaneously coupled physiological responses and their behavioral and experiential correlates. Series of analyses using both simulated and empirical cardiac (IBI), electrodermal (EDA), and facial electromyographic (EMG) data indicated that, despite potential autocorrelated structures, smoothing increased the reliability of detecting response coupling from an interindividual distribution of intraindividual measures and that especially the measures of covariance produced accurate information on the extent of coupled responses. This methodology was applied to analyze spontaneously coupled IBI, EDA, and facial EMG responses and vagal activity in their relation to emotional experience and personality characteristics in a group of middle-aged men (n = 37) during the administration of the Rorschach testing protocol. The results revealed new characteristics in the relationship between phasic end-organ synchronization and vagal activity, on the one hand, and individual differences in emotional adjustment to novel situations on the other. Specifically, it appeared that the vagal system is intimately related to emotional and social responsivity. It was also found that the lack of spontaneously synchronized responses is related to decreased energetic arousal (e.g., depression, mood). These findings indicate that the present process analysis approach has many advantages for use in both experimental and applied research, and that it is a useful new paradigm in psychophysiological research. Keywords: Autonomic Nervous System; Emotion; Facial Electromyography; Individual Differences; Spontaneous Responses; Time Series Analysis; Vagal System
Resumo:
A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90 degrees. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMB) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each sholder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figute eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activatoin. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.
Resumo:
This study compared adaptation in novel force fields where trajectories were initially either stable or unstable to elucidate the processes of learning novel skills and adapting to new environments. Subjects learned to move in a null force field (NF), which was unexpectedly changed either to a velocity-dependent force field (VF), which resulted in perturbed but stable hand trajectories, or a position-dependent divergent force field (DF), which resulted in unstable trajectories. With practice, subjects learned to compensate for the perturbations produced by both force fields. Adaptation was characterized by an initial increase in the activation of all muscles followed by a gradual reduction. The time course of the increase in activation was correlated with a reduction in hand-path error for the DF but not for the VF. Adaptation to the VF could have been achieved solely by formation of an inverse dynamics model and adaptation to the DF solely by impedance control. However, indices of learning, such as hand-path error, joint torque, and electromyographic activation and deactivation suggest that the CNS combined these processes during adaptation to both force fields. Our results suggest that during the early phase of learning there is an increase in endpoint stiffness that serves to reduce hand-path error and provides additional stability, regardless of whether the dynamics are stable or unstable. We suggest that the motor control system utilizes an inverse dynamics model to learn the mean dynamics and an impedance controller to assist in the formation of the inverse dynamics model and to generate needed stability.
Resumo:
It has been shown that during arm movement, humans selectively change the endpoint stiffness of their arm to compensate for the instability in an unstable environment. When the direction of the instability is rotated with respect to the direction of movement, it was found that humans modify the antisymmetric component of their endpoint stiffness. The antisymmetric component of stiffness arises due to reflex responses suggesting that the subjects may have tuned their reflex responses as part of the feedforward adaptive control. The goal of this study was to examine whether the CNS modulates the gain of the reflex response for selective tuning of endpoint impedance. Subjects performed reaching movements in three unstable force fields produced by a robotic manipulandum, each field differing only in the rotational component. After subjects had learned to compensate for the field, allowing them to make unperturbed movements to the target, the endpoint stiffness of the arm was estimated in the middle of the movements. At the same time electromyographic activity (EMG) of six arm muscles was recorded. Analysis of the EMG revealed differences across force fields in the reflex gain of these muscles consistent with stiffness changes. This study suggests that the CNS modulates the reflex gain as part of the adaptive feedforward command in which the endpoint impedance is selectively tuned to overcome environmental instability. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
Gemstone Team CHIP
Resumo:
This study attempts to characterise the electromyographic activity and kinematics exhibited during the performance of take-off for a pole vaulting short run-up educational exercise, for different expertise levels. Two groups (experts and novices) participated in this study. Both groups were asked to execute their take-off technique for that specific exercise. Among the kinematics variables studied, the knee, hip and ankle angles and the hip and knee angular velocities were significantly different. There were also significant differences in the EMG variables, especially in terms of (i) biceps femoris and gastrocnemius lateralis activity at touchdown and (ii) vastus lateralis and gastrocnemius lateralis activity during take-off. During touchdown, the experts tended to increase the stiffness of the take-off leg to decrease braking. Novices exhibited less stiffness in the take-off leg due to their tendency to maintain a tighter knee angle. Novices also transferred less energy forward during take-off due to lack of contraction in the vastus lateralis, which is known to contribute to forward energy transfers. This study highlights the differences in both groups in terms of muscular and angular control according to the studied variables. Such studies of pole vaulting could be useful to help novices to learn expert's technique.
Resumo:
This study investigated the effect of crank configuration on muscle activity and torque production during submaximal arm crank ergometry. Thirteen non-specifically trained male participants volunteered. During the research trials they completed a warm-up at 15 W before two 3-min exercise stages were completed at 50 and 100 W; subjects used either a synchronous or asynchronous pattern of cranking. During the final 30-s of each submaximal exercise stage electromyographic and torque production data were collected. After the data had been processed each parameter was analysed using separate 2-way ANOVA tests with repeated measures. The activity of all muscles increased in line with external workload, although a shift in the temporal pattern of muscle activity was noted between crank configurations. Patterns of torque production during asynchronous and synchronous cranking were distinct. Furthermore, peak, minimum and delta (peak-minimum) torque values were different (P < 0.05) between crank configurations at both workloads. For example, at 100 W, peak torque using synchronous [19.6 (4.3) Nm] cranking was higher (P < 0.05) compared to asynchronous [16.8 (1.6) Nm] cranking. In contrast minimum torque was lower (P < 0.05) at 100 W using synchronous [4.8 (1.7) Nm] compared to asynchronous [7.3 (1.2) Nm] cranking. There was a distinct bilateral asymmetry in torque production during asynchronous cranking with the dominant transmitting significantly more force to the crank arm. Taken together, these preliminary data demonstrate the complex nature of muscle activity during arm crank ergometry performed with an asynchronous or synchronous crank set-up. Further work is required to determine how muscle activity (EMG activity) and associated patterns of torque production influence physiological responses and functional capacity during arm crank ergometry.
Resumo:
Introduction: The critical phase, in jumping events in track and field, appears to be between touchdown and take-off. Since obvious similarities exist between the take off phase in both long jump and pole vault, numerous 3D kinematics and electromyographic studies have only looked at long jump. Currently there are few detailed kinematics electromyographic data on the pole vault take-off phase. The aim of this study was therefore to characterise kinematics and electromyographic variables during the take-off phase to provide a better understanding of this phase in pole vaulting and its role in performance outcome. Material and methods: Six pole-vaulters took part in the study. Kinematics data were captured with retro reflective markers fixed on the body. Hip, knee and ankle angle were calculated. Differential bipolar surface electrodes were placed on the following muscles of the take-off leg: tibialis anterior, lateral gastrocnemius, vastus lateralis, rectus femoris, bicep femoris and gluteus maximus. EMG activity was synchronously acquired with the kinematic data. EMG data were rectified and smoothed using a second order low pass Butterworth Bidirectional filter (resulting in a 4th order filter) with a cut-off frequency of 14 Hz. Results: Evolution of hip, knee and ankle angle show no significant differences during the last step before touchdown, the take-off phase and the beginning of fly phase. Meanwhile, strong differences in EMG signal are noted inter and intra pole vaulter. However for a same subject the EMG activities seem to converge to some phase locked point. Discussion: All pole vaulters have approximately the same visible coordination This coordination reflects a different muscular control among pole vaulters but also for a considered pole vaulter. These phase locked point could be considered as invariant of motor control i.e. a prerequisite for a normal sequence of the movement and performance realization.
Resumo:
Although it has long been supposed that resistance training causes adaptive changes in the CNS, the sites and nature of these adaptations have not previously been identified. In order to determine whether the neural adaptations to resistance training occur to a greater extent at cortical or subcortical sites in the CNS, we compared the effects of resistance training on the electromyographic (EMG) responses to transcranial magnetic (TMS) and electrical (TES) stimulation. Motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of 16 individuals before and after 4 weeks of resistance training for the index finger abductors (n=8), or training involving finger abduction-adduction without external resistance (n=8). TMS was delivered at rest at intensities from 5% below the passive threshold to the maximal output of the stimulator. TMS and TES were also delivered at the active threshold intensity while the participants exerted torques ranging from 5 to 60% of their maximum voluntary contraction (MVC) torque. The average latency of MEPs elicited by TES was significantly shorter than that of TMS MEPs (TES latency=21.5+/-1.4 ms; TMS latency=23.4+/-1.4 ms; P
Resumo:
The control of movement is predicated upon a system of constraints of musculoskeletal and neural origin. The focus of the present study was upon the manner in which such constraints are adapted or superseded during the acquisition of motor skill. Individuals participated in five experimental sessions, ill which they attempted to produce abduction-adduction movements of the index finger in time with an auditory metronome. During each trial, the metronome frequency was increased in eight steps from an individually determined base frequency. Electromyographic (EMC) activity was recorded from first dorsal interosseous (FDI), first volar interosseous (FVI), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) muscles. The movements produced on the final day of acquisition more accurately matched the required profile, and exhibited greater spatial and temporal stability, than those generated during initial performance. Tn the early stages of skill acquisition, an alternating pattern of activation in FDI and FVI was maintained, even at the highest frequencies. Tn contrast, as the frequency of movement was increased, activity in FDS and EDC was either tonic or intermittent. As learning proceeded, alterations in recruitment patterns were expressed primarily in the extrinsic muscles (EDC and FDS). These changes took the form of increases in the postural role of these muscles, shifts to phasic patterns of activation, or selective disengagement of these muscles. These findings suggest that there is considerable flexibility in the composition of muscle synergies, which is exploited by individuals during the acquisition of coordination.
Resumo:
‘Temporally urgent’ reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.
Resumo:
Background: There has been an explosion of interest in methods of exogenous brain stimulation that induce changes in the excitability of human cerebral cortex. The expectation is that these methods may promote recovery of function following brain injury. To assess their effects on motor output, it is typical to assess the state of corticospinal projections from primary motor cortex to muscles of the hand, via electromyographic responses to transcranial magnetic stimulation. If a range of stimulation intensities is employed, the recruitment curves (RCs) obtained can, at least for intrinsic hand muscles, be fitted by a sigmoid function.
Objective/hypothesis: To establish whether sigmoid fits provide a reliable basis upon which to characterize the input–output properties of the corticospinal pathway for muscles proximal to the hand, and to assess as an alternative the area under the (recruitment) curve (AURC).
Methods: A comparison of the reliability of these measures, using RCs obtained for muscles that are frequently the targets of rehabilitation.
Results: The AURC is an extremely reliable measure of the state of corticospinal projections to hand and forearm muscles, which has both face and concurrent validity. Construct validity is demonstrated by detection of widely distributed (across muscles) changes in corticospinal excitability induced by paired associative stimulation (PAS).
Conclusion(s): The parameters derived from sigmoid fits are unlikely to provide an adequate means to assess the effectiveness of therapeutic regimes. The AURC can be employed to characterize corticospinal projections to a range of muscles, and gauge the efficacy of longitudinal interventions in clinical rehabilitation.
Resumo:
As diferenças entre os géneros parecem surgir desde a origem da humanidade, quando a função do homem era caçar e da mulher fornecer cuidados às crianças e realizar trabalhos de cariz manual. O membro superior apresenta um papel primordial na execução da maioria das atividades relevantes para o ser humano, sendo pertinente a realização de avaliações mais objetivas do mesmo. Com a realização deste estudo pretendemos verificar se existem diferenças entre os géneros nos parâmetros eletromiográficos e cinemáticos do movimento durante uma atividade diária; perceber se os valores da eletromiografia e da cinemática do membro superior são dependentes do género à medida que a distância do objeto é alterada e ainda, levar a cabo a análise da atividade de beber. Para tal foram avaliados parâmetros de qualidade de movimento e parâmetros de recrutamento muscular em 15 indivíduos do género feminino e 15 indivíduos do género masculino com idades compreendidas entre os 18 e os 30 anos numa atividade de beber em três momentos diferentes. Para a análise cinemática foi utilizado o software Qualysis Motion Capture e para a análise eletromiográfica o software AcqKnowledge Analysis. Com os resultados obtidos constatamos que a percentagem de ativação muscular e os ângulos de flexão do ombro e flexão do cotovelo apresentam diferenças estatisticamente significativas (p<0.05) entre os géneros, sendo o grupo feminino a apresentar valores superiores. Aferiu-se também que a percentagem de ativação do músculo Deltoide Anterior parece ser influenciado pelo género (p<0.05) ao longo das três distâncias em estudo, sendo novamente o grupo feminino a apresentar valores superiores. Para além disto, aquando do movimento de alcançar, verificaram-se evidências estatísticas (p<0.05) do envolvimento do tronco em todas as distâncias de alcance do objeto, inclusive numa distância inferior ao comprimento do braço. Este estudo permitiu a descrição detalhada da eletromiografia e cinemática do movimento do membro superior de alcançar e transportar numa atividade diária, bem como uma comparação da mesma entre o grupo masculino e grupo feminino.
Resumo:
Introdução: No futebol, a entorse lateral do tornozelo (ELT) destaca-se como sendo a lesão mais prevalente. Potenciada pela variedade de chuteiras disponíveis no mercado e pela crescente utilização de relvados sintéticos, a interação entre o terreno e o calçado tem assumido elevada relevância como fator de risco para a ELT. A maior incidência de lesões na 2ª parte do jogo traduz a necessidade do estudo dessa interação durante tarefas que envolvam fadiga. Objetivo: Estudar a influência das chuteiras em variáveis preditoras do risco de ELT em relvado sintético sob duas condições: sem e com fadiga dos músculos eversores do tornozelo Métodos: Foi utilizada uma amostra de atletas saudáveis. Todos os indivíduos realizaram 3 séries de 5 saltos médio-laterais uni-podálicos, cada uma com 1 de 3 modelos de chuteiras (Turf, Hard e Firm ground) em duas condições: sem e com fadiga induzida pelo dinamómetro isocinético. Durante a tarefa, a atividade eletromiográfica do longo e curto peroniais, o valor das forças de reação do solo e o movimento do retro-pé (plano frontal), foram recolhidos e usados para calcular variáveis cinemáticas (eversão/inversão do tornozelo, o deslocamento e velocidade do centro de pressão), cinéticas (taxa de crescimento das forças de reação do solo) e neuromusculares (tempo de ativação muscular dos peroniais). Resultados: À exceção do tempo de ativação do curto peronial com o modelo Hard ground (sem fadiga vs com fadiga (p=0,050), não foram identificadas diferenças estatisticamente significativas nas variáveis preditoras de lesão, entre chuteiras, nem entre as duas condições avaliadas. Conclusão: Para o teste funcional escolhido e executado por atletas saudáveis em sintético de 3ª geração, nenhuma das chuteiras apresenta maior risco de lesão (com e sem fadiga), tendo em conta as variáveis em estudo.
Resumo:
Introdução: A sequência de movimento de sentado para de pé (SPP) exige um elevado controlo postural (CP). Em indivíduos com doença de Parkinson (DP), os circuitos que envolvem os ajustes posturais antecipatórios (APA’s) parecem estar afetados, refletindo-se numa diminuição do CP com repercussões nesta sequência de movimento. Objetivo: Avaliar o comportamento dos APA’s na tibio-társica na sequência de movimento SPP em indivíduos com DP. Métodos: Recorreu-se ao estudo de 4 casos com DP, com tempo de evolução entre os 3 e 17 anos, objeto de uma intervenção de fisioterapia baseada nos princípios do Conceito de Bobath durante 12 semanas. Antes (M0) e após (M1) a intervenção procedeu-se ao registo eletromiográfico dos músculos tibial anterior (TA) e solear (SOL) bilateralmente e durante a sequência de SPP. Adicionalmente foram também utilizadas a Escala de Equilíbrio de Berg, a Modified Falls Efficacy Scale (MFES) e a Classificação Internacional de Funcionalidade (CIF), para, indiretamente, averiguar o impacto funcional da reorganização dos APA’s. Resultados: Em M0 os resultados sugerem uma diminuição APA’s, uma vez que se observou: 1) diferentes tempos de ativação do TA e do SOL entre membros e 2) uma ativação prévia do SOL ao TA para os participantes A, C e D. Em M1, observou-se uma aproximação ao comtemplado para os APA’s para a maioria dos indivíduos. Os resultados na escala de Berg e MFES, de M0 para M1, sugerem um aumento do equilíbrio e da capacidade de confiança na maioria dos participantes (A, 21/42 pontos, B manteve a pontuação final 31 pontos, C, 50/54 pontos e D 45/53 pontos na escala de Berg; A, 30/43 pontos, B, 21/18 pontos, C, 70/68 pontos e D, 40/64 pontos na MFES;). Também se observaram melhorias nas atividades e participação da CIF. Conclusão: nos indivíduos em estudo verificou-se, de uma forma geral, uma modificação no sentido da aproximação do período comtemplado para os APA’s, em M1. Nos sujeitos A, C, e D verificou-se uma modificação do tempo de activação do SOL em função da actividade do TA em M1. No individuo B, à esquerda não se verificou o mesmo comportamento, verificou-se a activação inversa do SOL ao TA.