977 resultados para Electrical conductivity measurements


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical conductivity of Mn doped SnO2 systems prepared by an organic route (Pechini's method) has been investigated as a function of antimony and niobium concentration. The conductivity increases with the increase of both concentration ions, however, in a different manner. While the conductivity of niobium doped ceramics increases with the power of 1.6 for the entire range of concentrations studied (0.01-0.7 mol%), the conductivity of antimony doped ceramics increases with the power of 1.9 in the range 0.01-0.05 mol% of Sb; 3.7 in the range 0.05-0.30 mol% and 1.8 in the range 0.30-0.70 mol%. This behavior is attributed to the existence of two stable oxidation states for antimony: Sb3+ and Sb5+, while for niobium there is only one: Nb5+. The power of 3.7 for Sb would be related to the segregation of this ion on the grain boundary accompanied by an additional contribution coming from the substitution of Sn2+ by Sb3+ on the grain surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation of the ZrO(2):8 mol % Y(2)O(3)/NiO (YSZ/NiO) composites by a modified liquid mixture technique is reported. Nanometric NiO particles dispersed over the yttria-stabilized zirconia (YSZ) were prepared, resulting in dense sintered specimens with no solid solution formation between the oxides. Such a feature allowed for the electrical characterization of the composites in a wide range of relative volume fraction, temperature, and oxygen partial pressure. The main results indicate that the composites have high electrical conductivity, and the transport properties in these mixed ionic-electronic (MIEC) composites are strongly dependent on the relative volume fraction of the phases, microstructure, and temperature. These parameters should hence be taken into consideration for the optimized design of MIEC composites for electrochemical applications. In this context, the composite was reduced under H(2) for the preparation of high-conductivity YSZ/Ni cermets for use as solid oxide fuel cell anode material with relatively low metal content. (c) 2005 the Electrochemical Society. [DOI:10.1149/1.2149312] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of soybean genotype and seed coat lignin content on bulk electrical conductivity were investigated. Seeds of nine soybean cultivars were hand harvested at R8 maturation stage in Londrina, PR., Brazil in 1995/96. Seeds were electrical conductivity tested using four replicates of 50 seeds per cultivar soaked in 75 mi of deionized water at 25 degrees C for 24 hours. Seed coat lignin content was determined using the potassium permanganate method. There was a significant relationship (R-2 = 0.84**) between electrical conductivity and seed coat lignin content, the latter being a characteristic that varies among soybean genotypes; the higher the amount of lignin in the seed coat, the lower the levels of seed exudates to the soaking solution and consequently the lower the electrical conductivity. It was concluded that seed soaking electrical conductivity is influenced by the seed coat lignin content, which is a characteristic that varies among soybean genotypes. Additionally, the EC test can be used as a valuable tool in the screening process for this characteristic, which is desirable for genetically improving soybean seed quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the period from October/92 to September/94 experiments were carried out at the Seed Laboratory, FCAV/UNESP, Jaboticabal, SP, Brazil, using soybean seeds of different genotypes in order to evaluate the effect of genotype on the electrical conductivity (bulk conductivity) of soaked seeds. Seed moisture content (105 ± 3°C, 24 h), standard germination (four 50-seed samples, paper towel, 30°C), and vigor-accelerated aging (42°C, 48 h) were first determined. Undamaged soybean seeds were soaked in deionized water (four 50-seed samples, 75 ml, 25°C, 24 h) and electrical conductivity (μmhos.cm+1.g+1) was measured. Significant differences in conductivity were observed among genotypes having the same pattern of germination and vigor. The results have showed that electrical conductivity can be significantly influenced by genotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seeds from six soybean cultivars (Cristalina, IAC 31-Foscarin, IAC-15, UFV-10, IAC-14 and IAS-5) and from five soybean cultivars (IAC 31-Foscarin, IAC-15, IAC-14, IAS-5 and Iguacu) were evaluated in 1993 and 1994, respectively, in terms of physiological seed quality by the mechanical damage (MD), standard germination (SG), accelerated aging (AA), electrical conductivity (EC), and seedling field emergence (FE) tests. Significant correlations were detected between SG, AA and EC and FE. However, in terms of the cultivar or the year, the degree of association among these parameters can change based on the environmental conditions of each year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the chemical alterations of the substrate in the cultivation of pepper in coconut husk fiber, in a protected environment. Initially, 160 pepper plants ('Eppo') were divided into four blocks, where two pots per block were analyzed every 21 days after transplanting. The cultivation of pepper was carried out in plastic pots of 13 L, containing coconut husk fiber, and placed in double rows with a spacing of 0.5×0.8 m between single rows and 1.10 m between double rows. After removal of the plants from the pots, individual samples of substrate (approximately 1 L) were collected from each pot and dried at ambient temperature. Electrical conductivity (EC), pH, and levels of NH4 +-N, NO3 -, P and K were determined for all periods of the cultivation. These analyses were performed using the method of extraction 1:1.5 v/v. For the conditions which the experiment was conducted, there was an increase in substrate EC, as well as in the levels of nitrogen, phosphorus and potassium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid tests to assess the nutritional status of plants gerbera can make easier the decision of any adjustments in the fertilization of the substrate. The study was conducted to evaluate nutritionally fertigated gerbera plants with increasing levels of electrical conductivity (EC), using portable meters nitrate and potassium, and chlorophyll. For this, two experiments were conducted. A randomized block design with five levels of EC (0.5, 2.0, 3.5, 5.0 and 6.5 dS m-1) and four replications was used. Cherry cultivar was used in the first experiment. In the second experiment, two cultivars (Cherry and Salmon Rose) were used. In the first experiment, the sap of the leaves was subjected to rapid testing of N-NO3- (equipment Cardy Horiba C -141). N-NO3- and K+ (C-131) were determined in the substrate solution. The intensity of the green leaf, in the second experiment was evaluated with portable Chlorophyll Meter. The N content in the indicator leaf in the first and N and K contents in the plant in the second experiment were determined. Rapid tests are presented as good indicators of the level of N-NO3- and K+ in plant tissue, with the advantages of convenience and speed of determination, facilitating monitoring of fertilization of the substrate by producers and technicians.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality and the profitability on floriculture are intimately linked to the adequate plant nutrition. In the present research we aimed to evaluate the electrical conductivity (EC) and pH of the substrate solution on four different gerbera cultivars subjected to fertigation, with two nutritive solutions. The experiment was carried out in a greenhouse, from May to July 2006, on the Universidade Estadual Paulista, Botucatu, São Paulo state, Brazil. The experiment was carried out under an experimental design of random blocks, in 4×2 factorial arrangement, with four Gerbera cultivars (Cherry, Golden Yellow, Salmon Rose and Orange) and two nutritive solution concentrations: 0.92 and 1.76 dS m-1 EC) during the vegetative stage, and 1.07 and 2.04 dS m-1 during the reproductive stage (S1 and S2, respectively). The nutrients were applied through fertigation, manually performed every day. The EC and pH values of the substrate solution were evaluated weekly, using the 'pourthru' method. Orange and Cherry cultivars had, respectively, the highest and the lowest electrical conductivity of the substrate solution, and Cherry was the most efficient on the nutrient uptake. The solution S2 showed a trend to accumulate salts in the substrate, but without visual symptoms of plant toxicity, leading to the lowest pH values. The 'pourthru' method was efficient when compared to the 1:2 method and can be adopted for substrate solution analysis in gerbera culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to adapt the methodology of the accelerated aging and electrical conductivity tests for determination of physiological potential in crambe seeds. Six seed lots of crambe (cv. FMS Brilhante) were subjected to determination of moisture content, germination test, first count germination, emergence, and emergence speed index. For the accelerated aging test, the traditional methodology was used with water, and with a saturated potassium chloride and sodium chloride solution in three periods of exposure (24, 48, and 72 hours) at 41 degrees C; the electrical conductivity test was performed with four pre-soaking treatments (0, 2, 4, and 8 hours) and four soaking periods (4, 8, 16, and 24 hours) at 25 degrees C. The accelerated aging test with water for 72 hours and the electrical conductivity test with 2 hours of pre-soaking and assessment after 16 hours were effective for classification of the crambe seed lots in regard to physiological quality.