937 resultados para Elastic moduli


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed non-equilibrium state diagram of shape-anisotropic particle fluids is constructed. The effects of particle shape are explored using Naive Mode Coupling Theory (NMCT), and a single particle Non-linear Langevin Equation (NLE) theory. The dynamical behavior of non-ergodic fluids are discussed. We employ a rotationally frozen approach to NMCT in order to determine a transition to center of mass (translational) localization. Both ideal and kinetic glass transitions are found to be highly shape dependent, and uniformly increase with particle dimensionality. The glass transition volume fraction of quasi 1- and 2- dimensional particles fall monotonically with the number of sites (aspect ratio), while 3-dimensional particles display a non-monotonic dependence of glassy vitrification on the number of sites. Introducing interparticle attractions results in a far more complex state diagram. The ideal non-ergodic boundary shows a glass-fluid-gel re-entrance previously predicted for spherical particle fluids. The non-ergodic region of the state diagram presents qualitatively different dynamics in different regimes. They are qualified by the different behaviors of the NLE dynamic free energy. The caging dominated, repulsive glass regime is characterized by long localization lengths and barrier locations, dictated by repulsive hard core interactions, while the bonding dominated gel region has short localization lengths (commensurate with the attraction range), and barrier locations. There exists a small region of the state diagram which is qualified by both glassy and gel localization lengths in the dynamic free energy. A much larger (high volume fraction, and high attraction strength) region of phase space is characterized by short gel-like localization lengths, and long barrier locations. The region is called the attractive glass and represents a 2-step relaxation process whereby a particle first breaks attractive physical bonds, and then escapes its topological cage. The dynamic fragility of fluids are highly particle shape dependent. It increases with particle dimensionality and falls with aspect ratio for quasi 1- and 2- dimentional particles. An ultralocal limit analysis of the NLE theory predicts universalities in the behavior of relaxation times, and elastic moduli. The equlibrium phase diagram of chemically anisotropic Janus spheres and Janus rods are calculated employing a mean field Random Phase Approximation. The calculations for Janus rods are corroborated by the full liquid state Reference Interaction Site Model theory. The Janus particles consist of attractive and repulsive regions. Both rods and spheres display rich phase behavior. The phase diagrams of these systems display fluid, macrophase separated, attraction driven microphase separated, repulsion driven microphase separated and crystalline regimes. Macrophase separation is predicted in highly attractive low volume fraction systems. Attraction driven microphase separation is charaterized by long length scale divergences, where the ordering length scale determines the microphase ordered structures. The ordering length scale of repulsion driven microphase separation is determined by the repulsive range. At the high volume fractions, particles forgo the enthalpic considerations of attractions and repulsions to satisfy hard core constraints and maximize vibrational entropy. This results in site length scale ordering in rods, and the sphere length scale ordering in Janus spheres, i.e., crystallization. A change in the Janus balance of both rods and spheres results in quantitative changes in spinodal temperatures and the position of phase boundaries. However, a change in the block sequence of Janus rods causes qualitative changes in the type of microphase ordered state, and induces prominent features (such as the Lifshitz point) in the phase diagrams of these systems. A detailed study of the number of nearest neighbors in Janus rod systems reflect a deep connection between this local measure of structure, and the structure factor which represents the most global measure of order.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Determining effective hydraulic, thermal, mechanical and electrical properties of porous materials by means of classical physical experiments is often time-consuming and expensive. Thus, accurate numerical calculations of material properties are of increasing interest in geophysical, manufacturing, bio-mechanical and environmental applications, among other fields. Characteristic material properties (e.g. intrinsic permeability, thermal conductivity and elastic moduli) depend on morphological details on the porescale such as shape and size of pores and pore throats or cracks. To obtain reliable predictions of these properties it is necessary to perform numerical analyses of sufficiently large unit cells. Such representative volume elements require optimized numerical simulation techniques. Current state-of-the-art simulation tools to calculate effective permeabilities of porous materials are based on various methods, e.g. lattice Boltzmann, finite volumes or explicit jump Stokes methods. All approaches still have limitations in the maximum size of the simulation domain. In response to these deficits of the well-established methods we propose an efficient and reliable numerical method which allows to calculate intrinsic permeabilities directly from voxel-based data obtained from 3D imaging techniques like X-ray microtomography. We present a modelling framework based on a parallel finite differences solver, allowing the calculation of large domains with relative low computing requirements (i.e. desktop computers). The presented method is validated in a diverse selection of materials, obtaining accurate results for a large range of porosities, wider than the ranges previously reported. Ongoing work includes the estimation of other effective properties of porous media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La0.6Sr0.4M0.1Fe0.9O3-δ (M: Co, Ni and Cu) perovskite nanostructures were synthesized using low frequency ultrasound assisted synthesis technique and effect of substitution of Fe by Co, Ni and Cu on crystal structure and mechanical properties in La0.6Sr0.4FeO3-δ perovskite were studied. The HRTEM and Rietveld refinement analyses revealed the uniform equi-axial shape of the obtained nanostructures with the existence of La0.6Sr0.4M0.1Fe0.9O3−δ with mixed rhombohedral and orthorhombic structures. Substitution of Cu decreases the melting point of La0.6Sr0.4FeO3-δ. The results of mechanical characterizations show that La0.6Sr0.4Co0.1Fe0.9O3−δ and La0.6Sr0.4Ni0.1Fe0.9O3−δ have ferroelastic behavior and comparable elastic moduli, however, subtitution of Ni shows higher hardness and lower fracture toughness than Co in Bsite doping

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface effect on the four independent elastic constants of nanohoneycombs is investigated in this paper. The axial deformation of the horizontal cell wall is included, comparing to the Gibson's method, and the contributions of the two components of surface stress (i.e. surface residual stress and surface elasticity) are discussed. The result shows that the regular hexagonal honeycomb is not isotropic but orthotropic. An increase in the cell-wall thickness t leads to an increase in the discrepancy of the Young's moduli in both directions. Furthermore, the surface residual stress dominates the surface effect on the elastic constants when t < 15 nm (or the relative density <0.17), which is in contrast to that the surface elasticity does when t > 15 nm (or the relative density > 0.17) for metal Al. The present structure and theory may be useful in the design of future nanodevices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An anomalous variation in the experimental elastic modulus, E, of Ti-6Al-4V-xB (with x up to 0.55 wt.%) is reported. Volume fractions and moduli of the constituent phases were measured using microscopy and nanoindentation,respectively. These were used in simple micromechanical models to examine if the E values could be rationalized. Experimental E values higher than the upper bound estimates suggest complex interplay between microstructural modifications, induced by the addition of B, and properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface of a soft elastic film becomes unstable and forms a self-organized undulating pattern because of adhesive interactions when it comes in contact proximity with a rigid surface. For a single film, the pattern length scale lambda, which is governed by the minimization of the elastic stored energy, gives lambda similar to 3h, where h is the film thickness. Based on a linear stability analysis and simulations of adhesion and debonding, we consider the contact instability of an elastic bilayer, which provides greater flexibility in the morphological control of interfacial instability. Unlike the case of a single film, the morphology of the contact instability patterns, debonding distance, and debonding force in a bilayer can be controlled in a nonlinear way by varying the thicknesses and shear moduli of the films. Interestingly, the pattern wavelength in a bilayer can be greatly increased or decreased compared to a single film when the adhesive contact is formed by the stiffer or the softer of the two films, respectively. In particular, lambda as small as 0.5h can be obtained. This indicates a new strategy for pattern miniaturization in elastic contact lithography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient algorithm within the finite deformation framework is developed for finite element implementation of a recently proposed isotropic, Mohr-Coulomb type material model, which captures the elastic-viscoplastic, pressure sensitive and plastically dilatant response of bulk metallic glasses. The constitutive equations are first reformulated and implemented using an implicit numerical integration procedure based on the backward Euler method. The resulting system of nonlinear algebraic equations is solved by the Newton-Raphson procedure. This is achieved by developing the principal space return mapping technique for the present model which involves simultaneous shearing and dilatation on multiple potential slip systems. The complete stress update algorithm is presented and the expressions for viscoplastic consistent tangent moduli are derived. The stress update scheme and the viscoplastic consistent tangent are implemented in the commercial finite element code ABAQUS/Standard. The accuracy and performance of the numerical implementation are verified by considering several benchmark examples, which includes a simulation of multiple shear bands in a 3D prismatic bar under uniaxial compression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elastic behavior of single-walled boron nitride nanotubes is studied under axial and torsional loading. Molecular dynamics simulation is carried out with a tersoff potential for modeling the interatomic interactions. Different chiral configurations with similar diameter are considered to study the effect of chirality on the elastic and shear moduli. Furthermore, the effects of tube length on elastic modulus are also studied by considering different aspects ratios. It is observed that both elastic and shear moduli depend upon the chirality of a nanotube. For aspect ratios less than 15, the elastic modulus reduces monotonically with an increase in the chiral angle. For chiral nanotubes, the torsional response shows a dependence on the direction of loading. The difference between the shear moduli against and along the chiral twist directions is maximum for chiral angle of 15 degrees, and zero for zigzag (0 degrees) and armchair (30 degrees) configurations. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assemblages of circular tubes and circular honeycombs in close packed arrangement are presently both competing and complementing regular honeycomb structures (HCS). The intrinsic isotropy of bundled tubes/rings in hexagonal arrays restricts their use to applications with isotopic need. With the aim of extending the utility of tubes/rings assemblages to anisotropic needs, this paper explores the prospects of bundled tubes and circular honeycombs in a general diamond array structure (DAS) to cater these needs. To this end, effective transverse Young's moduli and Poisson's ratio for thick/thin DAS are obtained theoretically. Analysis frameworks including thin ring theory (TRT), curved beam theory (CBT) and elasticity formulations are tested and corroborated by FEA employing contact elements. Results indicate that TRT and CBT are reasonable for thin tubes and honeycombs. Nevertheless, TRT yields compact formulae to study the anisotropy ratio, moduli spectrum and sensitivity of the assemblage as a function of thicknesses and array structure. These formulae supplement designers as a guide to tailor the structures. On the other hand, elasticity formulation can estimate over a larger range including very thick tubes/rings. In addition, this formulation offers to estimate refined transverse strengths of assemblages. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rectangular structural unit cell of a-Al2O3 is generated from its hexagonal one. For the rectangular structural crystal with a simple interatomic potential [Matsui, Mineral Mag. 58A, 571 (1994)], the relations of lattice constants to homogeneous pressure and temperature are calculated by using Monte-Carlo method at temperature 298K and 0 GPa, respectively. Both numerical results agree with experimental ones fairly well. By comparing pair distribution function, the crystal structure of a-Al2O3 has no phase transition in the range of systematic parameters. Based on the potential model, pressure dependence of isothermal bulk moduli is predicted. Under variation of general strains, which include of external and internal strains, elastic constants of a-Al2O3 in the different homogeneous load are determined. Along with increase of pressure, axial elastic constants increase appreciably, but nonaxial elastic constants are slowly changed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoindentation tests were carried out to investigate certain elastic properties of Al2O3/SiCp composites at microscopic scales (nm up to mu m) and under ultra-low loads from 3 mN to 250 mN, with special attention paid to effects caused by SiC particles and pores. The measured Young's modulus depends on the volume fraction of SiC particles and on the composite porosity and it can compare with that of alumina. The Young's modulus exhibits large scatters at small penetrations, but it tends to be constant with lesser dispersion as the indentation depth increases. Further analysis indicated that the scatter results from specific microstructural heterogeneities. The measured Young's moduli are in agreement with predictions, provided the actual role of the microstructure is taken into account. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have been regarded as ideal reinforcements of high-performance composites with enormous applications. However, the waviness of the CNTs and the interfacial bonding condition between them and the matrix are two key factors that influence the reinforcing efficiency. In this paper, the effects of the waviness of the CNTs and the interfacial debonding between them and the matrix on the effective moduli of CNT-reinforced composites are studied. A simple analytical model is presented to investigate the influence of the waviness on the effective moduli. Then, two methods are proposed to examine the influence of the debonding. It is shown that both the waviness and debonding can significantly reduce the stiffening effect of the CNTs. The effective moduli are very sensitive to the waviness when the latter is small, and this sensitivity decreases with the increase of the waviness. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cone Loading Test (CLT) consists of the execution of a load test on the piezocone probe in conjunction with the CPT test. The CLT yields the modulus ECLT, a parameter that can be used in the estimative of foundation settlement. It is also presented here the interpretation and the process to determine ECLT values from the stress-displacement curves obtained from cone loading tests. Several CLT tests were conducted at the experimental research site of São Paulo State University, Bauru-SP-Brazil. The geotechnical profile at the studied site is a brown to bright red slightly clayey fine sand, a tropical soil common to this region which is lateritic, unsaturated and collapsible. The results of CLT tests satisfactorily represent the behavior of the investigated soil. The penetrometric modulus ECLT for each depth was calculated considering the elastic behavior in the initial linear segment of the soil stress-strain curve. The ECLT moduli obtained for the various tests were compared to moduli obtained from PMT and DMT test results performed at same studied site. The shear modulus degradation curves obtained from the CLT tests are also presented. The comparison to PMT and DMT results indicates the CLT test is a viable complementary test to the CPT in the quest for better understanding stress-strain behavior of soils. Further, the CLT test provides a graphic visualization of the degradation of the shear modulus with increasing levels of strain. As a hybrid geotechnical test, CPT+CLT can be valuable in the investigation of non-conventional collapsible soils, whose literature lack reference parameters for the prediction of settlement in the design of foundations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elastic strain/stress fields (halo) around a compressed amorphous nano-track (core) caused by a single high-energy ion impact on LiNbO3 are calculated. A method is developed to approximately account for the effects of crystal anisotropy of LiNbO3 (symmetry 3m) on the stress fields for tracks oriented along the crystal axes (X, Y or Z). It only considers the zero-order (axial) harmonic contribution to the displacement field in the perpendicular plane and uses effective Poisson moduli for each particular orientation. The anisotropy is relatively small; however, it accounts for some differential features obtained for irradiations along the crystallographic axes X, Y and Z. In particular, the irradiation-induced disorder (including halo) and the associated surface swelling appear to be higher for irradiations along the X- or Y-axis in comparison with those along the Z-axis. Other irradiation effects can be explained by the model, e.g. fracture patterns or the morphology of pores after chemical etching of tracks. Moreover, it offers interesting predictions on the effect of irradiation on lattice parameters