995 resultados para ELECTRON-IMPACT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation for 4 and 6 MeV electron beams of Varian linear accelerators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-of-flight techniques have been used to measure fast neutral CO2 products from double electron transfer reactions of CO22+ ions with 4.0–7.0 keV impact energies. Double electron transfer cross sections have been determined to be in the range of (1.1–12.5) × 10−16 cm2 for reactions of CO22+ ions with CO2, CO, N2, Ar and O2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major aim in lung transplantation is to prevent the loss of structural integrity due to ischemia and reperfusion (I/R) injury. Preservation solutions protect the lung against I/R injury to a variable extent. We compared the influence of two extracellular-type preservation solutions (Perfadex, or PX, and Celsior, or CE) on the morphological alterations induced by I/R. Pigs were randomly assigned to sham (n = 4), PX (n = 5), or CE (n = 2) group. After flush perfusion with PX or CE, donor lungs were excised and stored for 27 hr at 4 degrees C. The left donor lung was implanted into the recipient, reperfused for 6 hr, and, afterward, prepared for light and electron microscopy. Intra-alveolar, septal, and peribronchovascular edema as well as the integrity of the blood-air barrier were determined stereologically. Intra-alveolar edema was more pronounced in CE (219.80 +/- 207.55 ml) than in PX (31.46 +/- 15.75 ml). Peribronchovascular (sham: 13.20 +/- 4.99 ml; PX: 15.57 +/- 5.53 ml; CE: 31.56 +/- 5.78 ml) and septal edema (thickness of alveolar septal interstitium, sham: 98 +/- 33 nm; PX: 84 +/- 8 nm; CE: 249 +/- 85 nm) were only found in CE. The blood-air barrier was similarly well preserved in sham and PX but showed larger areas of swollen and fragmented epithelium or endothelium in CE. The present study shows that Perfadex effectively prevents intra-alveolar, septal, and peribronchovascular edema formation as well as injury of the blood-air barrier during I/R. Celsior was not effective in preserving the lung from morphological I/R injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The single-electron transistor (SET) is one of the best candidates for future nano electronic circuits because of its ultralow power consumption, small size and unique functionality. SET devices operate on the principle of Coulomb blockade, which is more prominent at dimensions of a few nano meters. Typically, the SET device consists of two capacitively coupled ultra-small tunnel junctions with a nano island between them. In order to observe the Coulomb blockade effects in a SET device the charging energy of the device has to be greater that the thermal energy. This condition limits the operation of most of the existing SET devices to cryogenic temperatures. Room temperature operation of SET devices requires sub-10nm nano-islands due to the inverse dependence of charging energy on the radius of the conducting nano-island. Fabrication of sub-10nm structures using lithography processes is still a technological challenge. In the present investigation, Focused Ion Beam based etch and deposition technology is used to fabricate single electron transistors devices operating at room temperature. The SET device incorporates an array of tungsten nano-islands with an average diameter of 8nm. The fabricated devices are characterized at room temperature and clear Coulomb blockade and Coulomb oscillations are observed. An improvement in the resolution limitation of the FIB etching process is demonstrated by optimizing the thickness of the active layer. SET devices with structural and topological variation are developed to explore their impact on the behavior of the device. The threshold voltage of the device was minimized to ~500mV by minimizing the source-drain gap of the device to 17nm. Vertical source and drain terminals are fabricated to realize single-dot based SET device. A unique process flow is developed to fabricate Si dot based SET devices for better gate controllability in the device characteristic. The device vi parameters of the fabricated devices are extracted by using a conductance model. Finally, characteristic of these devices are validated with the simulated data from theoretical modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The general goal of this thesis is correlating observable properties of organic and metal-organic materials with their ground-state electron density distribution. In a long-term view, we expect to develop empirical or semi-empirical approaches to predict materials properties from the electron density of their building blocks, thus allowing to rationally engineering molecular materials from their constituent subunits, such as their functional groups. In particular, we have focused on linear optical properties of naturally occurring amino acids and their organic and metal-organic derivatives, and on magnetic properties of metal-organic frameworks. For analysing the optical properties and the magnetic behaviour of the molecular or sub-molecular building blocks in materials, we mostly used the more traditional QTAIM partitioning scheme of the molecular or crystalline electron densities, however, we have also investigated a new approach, namely, X-ray Constrained Extremely Localized Molecular Orbitals (XC-ELMO), that can be used in future to extracted the electron densities of crystal subunits. With the purpose of rationally engineering linear optical materials, we have calculated atomic and functional group polarizabilities of amino acid molecules, their hydrogen-bonded aggregates and their metal-organic frameworks. This has enabled the identification of the most efficient functional groups, able to build-up larger electric susceptibilities in crystals, as well as the quantification of the role played by intermolecular interactions and coordinative bonds on modifying the polarizability of the isolated building blocks. Furthermore, we analysed the dependence of the polarizabilities on the one-electron basis set and the many-electron Hamiltonian. This is useful for selecting the most efficient level of theory to estimate susceptibilities of molecular-based materials. With the purpose of rationally design molecular magnetic materials, we have investigated the electron density distributions and the magnetism of two copper(II) pyrazine nitrate metal-organic polymers. High-resolution X-ray diffraction and DFT calculations were used to characterize the magnetic exchange pathways and to establish relationships between the electron densities and the exchange-coupling constants. Moreover, molecular orbital and spin-density analyses were employed to understand the role of different magnetic exchange mechanisms in determining the bulk magnetic behaviour of these materials. As anticipated, we have finally investigated a modified version of the X-ray constrained wavefunction technique, XC-ELMOs, that is not only a useful tool for determination and analysis of experimental electron densities, but also enables one to derive transferable molecular orbitals strictly localized on atoms, bonds or functional groups. In future, we expect to use XC-ELMOs to predict materials properties of large systems, currently challenging to calculate from first-principles, such as macromolecules or polymers. Here, we point out advantages, needs and pitfalls of the technique. This work fulfils, at least partially, the prerequisites to understand materials properties of organic and metal-organic materials from the perspective of the electron density distribution of their building blocks. Empirical or semi-empirical evaluation of optical or magnetic properties from a preconceived assembling of building blocks could be extremely important for rationally design new materials, a field where accurate but expensive first-principles calculations are generally not used. This research could impact the community in the fields of crystal engineering, supramolecular chemistry and, of course, electron density analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electron pencil-beam redefinition algorithm (PBRA) of Shiu and Hogstrom has been developed for use in radiotherapy treatment planning (RTP). Earlier studies of Boyd and Hogstrom showed that the PBRA lacked an adequate incident beam model, that PBRA might require improved electron physics, and that no data existed which allowed adequate assessment of the PBRA-calculated dose accuracy in a heterogeneous medium such as one presented by patient anatomy. The hypothesis of this research was that by addressing the above issues the PBRA-calculated dose would be accurate to within 4% or 2 mm in regions of high dose gradients. A secondary electron source was added to the PBRA to account for collimation-scattered electrons in the incident beam. Parameters of the dual-source model were determined from a minimal data set to allow ease of beam commissioning. Comparisons with measured data showed 3% or better dose accuracy in water within the field for cases where 4% accuracy was not previously achievable. A measured data set was developed that allowed an evaluation of PBRA in regions distal to localized heterogeneities. Geometries in the data set included irregular surfaces and high- and low-density internal heterogeneities. The data was estimated to have 1% precision and 2% agreement with accurate, benchmarked Monte Carlo (MC) code. PBRA electron transport was enhanced by modeling local pencil beam divergence. This required fundamental changes to the mathematics of electron transport (divPBRA). Evaluation of divPBRA with the measured data set showed marginal improvement in dose accuracy when compared to PBRA; however, 4% or 2mm accuracy was not achieved by either PBRA version for all data points. Finally, PBRA was evaluated clinically by comparing PBRA- and MC-calculated dose distributions using site-specific patient RTP data. Results show PBRA did not agree with MC to within 4% or 2mm in a small fraction (<3%) of the irradiated volume. Although the hypothesis of the research was shown to be false, the minor dose inaccuracies should have little or no impact on RTP decisions or patient outcome. Therefore, given ease of beam commissioning, documentation of accuracy, and calculational speed, the PBRA should be considered a practical tool for clinical use. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The BCR-ABL fusion gene is the molecular hallmark of Philadelphia-positive leukemias. Normal Bcr is a multifunctional protein, originally localized to the cytoplasm. It has serine kinase activity and has been implicated in cellular signal transduction. Recently, it has been reported that Bcr can interact with xeroderma pigmentosum group B (XPB/ERCC3)—a nuclear protein active in UV-induced DNA repair. Two major Bcr proteins (p160 Bcr and p130Bcr) have been characterized, and our preliminary results using metabolic labeling and immunoblotting demonstrated that, while both the p160 and p130 forms of Bcr localized to the cytoplasm, the p130 form (and to a lesser extent p160) could also be found in the nucleus. Furthermore, electron microscopy confirmed the presence of Bcr in the nucleus and demonstrated that this protein associates with metaphase chromatin as well as condensed interphase heterochromatin. Since serine kinases that associate with condensed DNA are often cell cycle regulatory, these observations suggested a novel role for nuclear Bcr in cell cycle regulation and/or DNA repair. However, cell cycle synchronization analysis did not demonstrate changes in levels of Bcr throughout the cell cycle. Therefore we hypothesized that BCR serves as a DNA repair gene, and its function is altered by formation of BCR-ABL. This hypothesis was investigated using cell lines stably transfected with the BCR-ABL gene, and their parental counterparts (MBA-1 vs. M07E and Bcr-AblT1 vs. 4A2+pZAP), and several DNA repair assays: the Comet assay, a radioinimunoassay for UV-induced cyclobutane pyrimidine dimers (CPDs), and clonogenic assays. Comet assays demonstrated that, after exposure to either ultraviolet (UV)-C (0.5 to 10.0 joules m −2) or to gamma radiation (200–1000 rads) there was greater efficiency of DNA repair in the BCR-ABL-transfected cells compared to their parental controls. Furthermore, after UVC-irradiation, there was less production of CPDs, and a more rapid disappearance of these adducts in BCR-ABL-bearing cells. UV survival, as reflected by clonogenic assays, was also greater in the BCR-ABL-transfected cells. Taken together, these results indicate that, in our systems, BCR-ABL confers resistance to UVC-induced damage in cells, and increases DNA repair efficiency in response to both UVC- and gamma-irradiation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Respiration rates and electron transport system (ETS) activities were measured in dominant copepod species from the northern Benguela upwelling system in January-February 2011 to assess the accuracy of the ETS assay in predicting in vivo respiration rates. Individual respiration rates varied from 0.06 to 1.60 µL O2/h/ind, while ETS activities converted to oxygen consumption ranged from 0.14 to 4.46 µL O2/h/ind. ETS activities were significantly correlated with respiration rates (r**2 = 0.79, p = 0.0001). R:ETS ratios were lowest in slow-moving Eucalanidae (0.11) and highest in diapausing Calanoides carinatus copepodids CV (0.76) while fast-moving copepods showed intermediate R:ETS (0.23-0.37). 82% of the variance of respiration rates could be explained by differences in dry mass, temperature and the activity level of different copepod species. Three regression equations were derived to calculate respiration rates for diapausing, slow- and fast-moving copepods, respectively, based on parameters such as body mass and temperature. Thus, knowledge about the activity level and behavioral characteristics of copepod species can significantly increase the predictive accuracy of metabolic models, which will help to better understand and quantify the impact of copepods on nutrient and carbon fluxes in marine ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decapods were sampled with a 1 m**2 MOCNESS (mainly upper 1000 m) in the northern Benguela Current during three cruises in December 2009, September/October 2010 and February 2011. Although pelagic decapods are abundant members of the micronekton community, information about their ecophysiology is very limited. Species-specific regional distribution limits were detected for various decapod species (e.g. Plesionika carinata, Sergestes arcticus, Pasiphaea semispinosa). Significant diel vertical migration patterns were determined for three caridean and three penaeiodean species. Biomass was variable and ranged from 23 to 2770 mg dry mass m**-2 with highest values for P. semispinosa. Fatty acid and stable isotope analyses revealed that the examined decapod species are omnivorous tocarnivorous except for the herbivorous to omnivorous species P. carinata. Calanid copepods such as Calanoides carinatus were identified as an important prey item especially for caridean species. Community consumption rates of pelagic decapods derived from respiration rates ranged from 7 mg C m**-2 d**-1 (231S) to 420 mg C m**-2 d**-1 (191S, 171S). A potential active respiratory carbon flux was calculated for migrating pelagic decapods with 4.4 mg C m**- d**-1 for the upper 200 m and with 2.6 mg C m**-2 d**-1 from the base of the euphotic zone to a depth of 600 m. Overall, pelagic decapods apparently play a more prominent role in the northern Benguela Current ecosystem than previously assumed and may exert a substantial predation impact on calanid copepods (up to 13% d**-1 of standing stock).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apple fruits, cv. Granny Smith, were subjected to mechanical impact and compression loads utilizing a steel rod with a spherical tip 19 mm diameter, 50.6 g mass. Energies applied were low enough to produce enzymatic reaction: 0.0120 J for impact, and 0.0199 J for compression. Bruised material was cut and examined with a transmission electron microscope. In both compression and impact, bruises showed a central region located in the flesh parenchyma, at a distance that approximately equalled the indentor tip radius. The parenchyma cells of this region were more altered than cells from the epidermis and hypodermis. Tissues under compression presented numerous deformed parenchyma cells with broken tonoplasts and tissue degradation as predicted by several investigators. The impacted cells supported different kinds of stresses than compressed cells, resulting in the formation of intensive vesiculation, either in the vacuole or in the middle lamella region between cell walls of adjacent cells. A large proportion of parenchyma cells completely split or had initiated splitting at the middle lamella. Bruising may develop with or without cell rupture. Therefore, cell wall rupture is not essential for the development of a bruise, at least the smallest one, as predicted previously

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of GaAsSbN capping layers on InAs/GaAs quantum dots (QDs) has recently been proposed for micro- and optoelectronic applications for their ability to independently tailor electron and hole confinement potentials. However, there is a lack of knowledge about the structural and compositional changes associated with the process of simultaneous Sb and N incorporation. In the present work, we have characterized using transmission electron microscopy techniques the effects of adding N in the GaAsSb/InAs/GaAs QD system. Firstly, strain maps of the regions away from the InAs QDs had revealed a huge reduction of the strain fields with the N incorporation but a higher inhomogeneity, which points to a composition modulation enhancement with the presence of Sb-rich and Sb-poor regions in the range of a few nanometers. On the other hand, the average strain in the QDs and surroundings is also similar in both cases. It could be explained by the accumulation of Sb above the QDs, compensating the tensile strain induced by the N incorporation together with an In-Ga intermixing inhibition. Indeed, compositional maps of column resolution from aberration-corrected Z-contrast images confirmed that the addition of N enhances the preferential deposition of Sb above the InAs QD, giving rise to an undulation of the growth front. As an outcome, the strong redshift in the photoluminescence spectrum of the GaAsSbN sample cannot be attributed only to the N-related reduction of the conduction band offset but also to an enhancement of the effect of Sb on the QD band structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of power and time conditions of in situ N2 plasma treatment, prior to silicon nitride (SiN) passivation, were investigated on an AlGaN/GaN high-electron mobility transistor (HEMT). These studies reveal that N2 plasma power is a critical parameter to control the SiN/AlGaN interface quality, which directly affects the 2-D electron gas density. Significant enhancement in the HEMT characteristics was observed by using a low power N2 plasma pretreatment. In contrast, a marked gradual reduction in the maximum drain-source current density (IDS max) and maximum transconductance (gm max), as well as in fT and fmax, was observed as the N2 plasma power increases (up to 40% decrease for 210 W). Different mechanisms were proposed to be dominant as a function of the discharge power range. A good correlation was observed between the device electrical characteristics and the surface assessment by atomic force microscopy and Kelvin force microscopy techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrically floating metallic bare tether in a low Earth orbit would be highly negative with respect to the ambient plasma over most of its length, and would be bombarded by ambient ions. This would liberate secondary electrons, which, after acceleration through the same voltage, would form a magnetically guided two-sided planar e-beam. Upon impact on the atmospheric E-layer, at about 120-140 Km altitude auroral effects (ionization and light emission) can be expected. This paper examines in a preliminary way the feasibility of using this effect as an upper atmospheric probe. It is concluded that significant perturbations can be produced along the illuminated planar sheet of the atmosphere, with ionization rates of several thousand cm-3 sec1. Observation of the induced optical emission is made difficult by the narrowness and high moving speed of the illuminated zone, but it is shown that vertical resolution of single spectral lines is possible, as is wider spectral coverage with no vertical resolution.