984 resultados para Dynamical processes
Resumo:
Hochreichende Konvektion über Waldbränden ist eine der intensivsten Formen von atmosphärischer Konvektion. Die extreme Wolkendynamik mit hohen vertikalen Windgeschwindigkeiten (bis 20 m/s) bereits an der Wolkenbasis, hohen Wasserdampfübersättigungen (bis 1%) und die durch das Feuer hohen Anzahlkonzentration von Aerosolpartikeln (bis 100000 cm^-3) bilden einen besonderen Rahmen für Aerosol-Wolken Wechselwirkungen.Ein entscheidender Schritt in der mikrophysikalischen Entwicklung einer konvektiven Wolke ist die Aktivierung von Aerosolpartikeln zu Wolkentropfen. Dieser Aktivierungsprozess bestimmt die anfängliche Anzahl und Größe der Wolkentropfen und kann daher die Entwicklung einer konvektiven Wolke und deren Niederschlagsbildung beeinflussen. Die wichtigsten Faktoren, welche die anfängliche Anzahl und Größe der Wolkentropfen bestimmen, sind die Größe und Hygroskopizität der an der Wolkenbasis verfügbaren Aerosolpartikel sowie die vertikale Windgeschwindigkeit. Um den Einfluss dieser Faktoren unter pyro-konvektiven Bedingungen zu untersuchen, wurden numerische Simulationen mit Hilfe eines Wolkenpaketmodells mit detaillierter spektraler Beschreibung der Wolkenmikrophysik durchgeführt. Diese Ergebnisse können in drei unterschiedliche Bereiche abhängig vom Verhältnis zwischen vertikaler Windgeschwindigkeit und Aerosolanzahlkonzentration (w/NCN) eingeteilt werden: (1) ein durch die Aerosolkonzentration limitierter Bereich (hohes w/NCN), (2) ein durch die vertikale Windgeschwindigkeit limitierter Bereich (niedriges w/NCN) und (3) ein Übergangsbereich (mittleres w/NCN). Die Ergebnisse zeigen, dass die Variabilität der anfänglichen Anzahlkonzentration der Wolkentropfen in (pyro-) konvektiven Wolken hauptsächlich durch die Variabilität der vertikalen Windgeschwindigkeit und der Aerosolkonzentration bestimmt wird. rnUm die mikrophysikalischen Prozesse innerhalb der rauchigen Aufwindregion einer pyrokonvektiven Wolke mit einer detaillierten spektralen Mikrophysik zu untersuchen, wurde das Paketmodel entlang einer Trajektorie innerhalb der Aufwindregion initialisiert. Diese Trajektore wurde durch dreidimensionale Simulationen eines pyro-konvektiven Ereignisses durch das Model ATHAM berechnet. Es zeigt sich, dass die Anzahlkonzentration der Wolkentropfen mit steigender Aerosolkonzentration ansteigt. Auf der anderen Seite verringert sich die Größe der Wolkentropfen mit steigender Aerosolkonzentration. Die Reduzierung der Verbreiterung des Tropfenspektrums stimmt mit den Ergebnissen aus Messungen überein und unterstützt das Konzept der Unterdrückung von Niederschlag in stark verschmutzen Wolken.Mit Hilfe des Models ATHAM wurden die dynamischen und mikrophysikalischen Prozesse von pyro-konvektiven Wolken, aufbauend auf einer realistischen Parametrisierung der Aktivierung von Aerosolpartikeln durch die Ergebnisse der Aktivierungsstudie, mit zwei- und dreidimensionalen Simulationen untersucht. Ein modernes zweimomenten mikrophysikalisches Schema wurde in ATHAM implementiert, um den Einfluss der Anzahlkonzentration von Aerosolpartikeln auf die Entwicklung von idealisierten pyro-konvektiven Wolken in US Standardamtosphären für die mittleren Breiten und den Tropen zu untersuchen. Die Ergebnisse zeigen, dass die Anzahlkonzentration der Aerosolpartikel die Bildung von Regen beeinflusst. Für geringe Aerosolkonzentrationen findet die rasche Regenbildung hauptsächlich durch warme mikrophysikalische Prozesse statt. Für höhere Aerosolkonzentrationen ist die Eisphase wichtiger für die Bildung von Regen. Dies führt zu einem verspäteten Einsetzen von Niederschlag für verunreinigtere Atmosphären. Außerdem wird gezeigt, dass die Zusammensetzung der Eisnukleationspartikel (IN) einen starken Einfluss auf die dynamische und mikrophysikalische Struktur solcher Wolken hat. Bei sehr effizienten IN bildet sich Regen früher. Die Untersuchung zum Einfluss des atmosphärischen Hintergrundprofils zeigt eine geringe Auswirkung der Meteorologie auf die Sensitivität der pyro-konvektiven Wolken auf diernAerosolkonzentration. Zum Abschluss wird gezeigt, dass die durch das Feuer emittierte Hitze einen deutlichen Einfluss auf die Entwicklung und die Wolkenobergrenze von pyro-konvektive Wolken hat. Zusammenfassend kann gesagt werden, dass in dieser Dissertation die Mikrophysik von pyrokonvektiven Wolken mit Hilfe von idealisierten Simulation eines Wolkenpaketmodell mit detaillierte spektraler Mikrophysik und eines 3D Modells mit einem zweimomenten Schema im Detail untersucht wurde. Es wird gezeigt, dass die extremen Bedingungen im Bezug auf die vertikale Windgeschwindigkeiten und Aerosolkonzentrationen einen deutlichen Einfluss auf die Entwicklung von pyro-konvektiven Wolken haben.
Resumo:
In dieser Arbeit wird ein vergröbertes (engl. coarse-grained, CG) Simulationsmodell für Peptide in wässriger Lösung entwickelt. In einem CG Verfahren reduziert man die Anzahl der Freiheitsgrade des Systems, so dass manrngrössere Systeme auf längeren Zeitskalen untersuchen kann. Die Wechselwirkungspotentiale des CG Modells sind so aufgebaut, dass die Peptid Konformationen eines höher aufgelösten (atomistischen) Modells reproduziert werden.rnIn dieser Arbeit wird der Einfluss unterschiedlicher bindender Wechsel-rnwirkungspotentiale in der CG Simulation untersucht, insbesondere daraufhin,rnin wie weit das Konformationsgleichgewicht der atomistischen Simulation reproduziert werden kann. Im CG Verfahren verliert man per Konstruktionrnmikroskopische strukturelle Details des Peptids, zum Beispiel, Korrelationen zwischen Freiheitsgraden entlang der Peptidkette. In der Dissertationrnwird gezeigt, dass diese “verlorenen” Eigenschaften in einem Rückabbildungsverfahren wiederhergestellt werden können, in dem die atomistischen Freiheitsgrade wieder in die CG-Strukturen eingefügt werden. Dies gelingt, solange die Konformationen des CG Modells grundsätzlich gut mit der atomistischen Ebene übereinstimmen. Die erwähnten Korrelationen spielen einerngrosse Rolle bei der Bildung von Sekundärstrukturen und sind somit vonrnentscheidender Bedeutung für ein realistisches Ensemble von Peptidkonformationen. Es wird gezeigt, dass für eine gute Übereinstimmung zwischen CG und atomistischen Kettenkonformationen spezielle bindende Wechselwirkungen wie zum Beispiel 1-5 Bindungs- und 1,3,5-Winkelpotentiale erforderlich sind. Die intramolekularen Parameter (d.h. Bindungen, Winkel, Torsionen), die für kurze Oligopeptide parametrisiert wurden, sind übertragbarrnauf längere Peptidsequenzen. Allerdings können diese gebundenen Wechselwirkungen nur in Kombination mit solchen nichtbindenden Wechselwirkungspotentialen kombiniert werden, die bei der Parametrisierung verwendet werden, sind also zum Beispiel nicht ohne weiteres mit einem andere Wasser-Modell kombinierbar. Da die Energielandschaft in CG-Simulationen glatter ist als im atomistischen Modell, gibt es eine Beschleunigung in der Dynamik. Diese Beschleunigung ist unterschiedlich für verschiedene dynamische Prozesse, zum Beispiel für verschiedene Arten von Bewegungen (Rotation und Translation). Dies ist ein wichtiger Aspekt bei der Untersuchung der Kinetik von Strukturbildungsprozessen, zum Beispiel Peptid Aggregation.rn
Resumo:
After major volcanic eruptions the enhanced aerosol causes ozone changes due to greater heterogeneous chemistry on the particle surfaces (HET-AER) and from dynamical effects related to the radiative heating of the lower stratosphere (RAD-DYN). We carry out a series of experiments with an atmosphere–ocean–chemistry–climate model to assess how these two processes change stratospheric ozone and Northern Hemispheric (NH) polar vortex dynamics. Ensemble simulations are performed under present day and preindustrial conditions, and with aerosol forcings representative of different eruption strength, to investigate changes in the response behaviour. We show that the halogen component of the HET-AER effect dominates under present-day conditions with a global reduction of ozone (−21 DU for the strongest eruption) particularly at high latitudes, whereas the HET-AER effect increases stratospheric ozone due to N2O5 hydrolysis in a preindustrial atmosphere (maximum anomalies +4 DU). The halogen-induced ozone changes in the present-day atmosphere offset part of the strengthening of the NH polar vortex during mid-winter (reduction of up to −16 m s-1 in January) and slightly amplify the dynamical changes in the polar stratosphere in late winter (+11 m s-1 in March). The RAD-DYN mechanism leads to positive column ozone anomalies which are reduced in a present-day atmosphere by amplified polar ozone depletion (maximum anomalies +12 and +18 DU for present day and preindustrial, respectively). For preindustrial conditions, the ozone response is consequently dominated by RAD-DYN processes, while under present-day conditions, HET-AER effects dominate. The dynamical response of the stratosphere is dominated by the RAD-DYN mechanism showing an intensification of the NH polar vortex in winter (up to +10 m s-1 in January). Ozone changes due to the RAD-DYN mechanism slightly reduce the response of the polar vortex after the eruption under present-day conditions.
Resumo:
The present article describes research in progress which is developing a simple, replicable methodology aimed at identifying the regularities and specificity of human behavior in conflict escalation and de-escalation prooesses. These research efforts will ultimately be used to study conflict dynamics across cultures. The experimental data collected through this methodology, together with case studies and aggregated, time-series macro data are key for identifying relevant parameters, systems' properties, and micromechanisms defining the behavior of naturally occurring conflict escalation and de-escalation dynamics. This, in turn, is critical for the development of realistic, empirically supported computational models. The article outlines the theoretical assumptions of Dynamical Systems Theory with regard to conflict dynamics, with an emphasis on the process of conflict escalation and de-escalation. Next, work on a methodology for empirical study of escalation processes from a DST perspective is outlined. Specifically, the development of a progressive scenario methodology designed to map escalation sequences, together with anexample of a preliminary study based on the proposed researcb paradigm, is presented. Implications of the approach for the study of culture are discussed.
Resumo:
Modular organization and degree-degree correlations are ubiquitous in the connectivity structure of biological, technological, and social interacting systems. So far most studies have concentrated on unveiling both features in real world networks, but a model that succeeds in generating them simultaneously is needed. We consider a network of interacting phase oscillators, and an adaptation mechanism for the coupling that promotes the connection strengths between those elements that are dynamically correlated. We show that, under these circumstances, the dynamical organization of the oscillators shapes the topology of the graph in such a way that modularity and assortativity features emerge spontaneously and simultaneously. In turn, we prove that such an emergent structure is associated with an asymptotic arrangement of the collective dynamical state of the network into cluster synchronization.
Resumo:
El propósito de esta tesis fue estudiar el rendimiento ofensivo de los equipos de balonmano de élite cuando se considera el balonmano como un sistema dinámico complejo no lineal. La perspectiva de análisis dinámica dependiente del tiempo fue adoptada para evaluar el rendimiento de los equipos durante el partido. La muestra general comprendió los 240 partidos jugados en la temporada 2011-2012 de la liga profesional masculina de balonmano de España (Liga ASOBAL). En el análisis posterior solo se consideraron los partidos ajustados (diferencia final de goles ≤ 5; n = 142). El estado del marcador, la localización del partido, el nivel de los oponentes y el periodo de juego fueron incorporados al análisis como variables situacionales. Tres estudios compusieron el núcleo de la tesis. En el primer estudio, analizamos la coordinación entre las series temporales que representan el proceso goleador a lo largo del partido de cada uno de los dos equipos que se enfrentan. Autocorrelaciones, correlaciones cruzadas, doble media móvil y transformada de Hilbert fueron usadas para el análisis. El proceso goleador de los equipos presentó una alta consistencia a lo largo de todos los partidos, así como fuertes modos de coordinación en fase en todos los contextos de juego. Las únicas diferencias se encontraron en relación al periodo de juego. La coordinación en los procesos goleadores de los equipos fue significativamente menor en el 1er y 2º periodo (0–10 min y 10–20 min), mostrando una clara coordinación creciente a medida que el partido avanzaba. Esto sugiere que son los 20 primeros minutos aquellos que rompen los partidos. En el segundo estudio, analizamos los efectos temporales (efecto inmediato, a corto y a medio plazo) de los tiempos muertos en el rendimiento goleador de los equipos. Modelos de regresión lineal múltiple fueron empleados para el análisis. Los resultados mostraron incrementos de 0.59, 1.40 y 1.85 goles para los periodos que comprenden la primera, tercera y quinta posesión de los equipos que pidieron el tiempo muerto. Inversamente, se encontraron efectos significativamente negativos para los equipos rivales, con decrementos de 0.50, 1.43 y 2.05 goles en los mismos periodos respectivamente. La influencia de las variables situacionales solo se registró en ciertos periodos de juego. Finalmente, en el tercer estudio, analizamos los efectos temporales de las exclusiones de los jugadores sobre el rendimiento goleador de los equipos, tanto para los equipos que sufren la exclusión (inferioridad numérica) como para los rivales (superioridad numérica). Se emplearon modelos de regresión lineal múltiple para el análisis. Los resultados mostraron efectos negativos significativos en el número de goles marcados por los equipos con un jugador menos, con decrementos de 0.25, 0.40, 0.61, 0.62 y 0.57 goles para los periodos que comprenden el primer, segundo, tercer, cuarto y quinto minutos previos y posteriores a la exclusión. Para los rivales, los resultados mostraron efectos positivos significativos, con incrementos de la misma magnitud en los mismos periodos. Esta tendencia no se vio afectada por el estado del marcador, localización del partido, nivel de los oponentes o periodo de juego. Los incrementos goleadores fueron menores de lo que se podría esperar de una superioridad numérica de 2 minutos. Diferentes teorías psicológicas como la paralización ante situaciones de presión donde se espera un gran rendimiento pueden ayudar a explicar este hecho. Los últimos capítulos de la tesis enumeran las conclusiones principales y presentan diferentes aplicaciones prácticas que surgen de los tres estudios. Por último, se presentan las limitaciones y futuras líneas de investigación. ABSTRACT The purpose of this thesis was to investigate the offensive performance of elite handball teams when considering handball as a complex non-linear dynamical system. The time-dependent dynamic approach was adopted to assess teams’ performance during the game. The overall sample comprised the 240 games played in the season 2011-2012 of men’s Spanish Professional Handball League (ASOBAL League). In the subsequent analyses, only close games (final goal-difference ≤ 5; n = 142) were considered. Match status, game location, quality of opposition, and game period situational variables were incorporated into the analysis. Three studies composed the core of the thesis. In the first study, we analyzed the game-scoring coordination between the time series representing the scoring processes of the two opposing teams throughout the game. Autocorrelation, cross-correlation, double moving average, and Hilbert transform were used for analysis. The scoring processes of the teams presented a high consistency across all the games as well as strong in-phase modes of coordination in all the game contexts. The only differences were found when controlling for the game period. The coordination in the scoring processes of the teams was significantly lower for the 1st and 2nd period (0–10 min and 10–20 min), showing a clear increasing coordination behavior as the game progressed. This suggests that the first 20 minutes are those that break the game-scoring. In the second study, we analyzed the temporal effects (immediate effect, short-term effect, and medium-term effect) of team timeouts on teams’ scoring performance. Multiple linear regression models were used for the analysis. The results showed increments of 0.59, 1.40 and 1.85 goals for the periods within the first, third and fifth timeout ball possessions for the teams that requested the timeout. Conversely, significant negative effects on goals scored were found for the opponent teams, with decrements of 0.59, 1.43 and 2.04 goals for the same periods, respectively. The influence of situational variables on the scoring performance was only registered in certain game periods. Finally, in the third study, we analyzed the players’ exclusions temporal effects on teams’ scoring performance, for the teams that suffer the exclusion (numerical inferiority) and for the opponents (numerical superiority). Multiple linear regression models were used for the analysis. The results showed significant negative effects on the number of goals scored for the teams with one less player, with decrements of 0.25, 0.40, 0.61, 0.62, and 0.57 goals for the periods within the previous and post one, two, three, four and five minutes of play. For the opponent teams, the results showed positive effects, with increments of the same magnitude in the same game periods. This trend was not affected by match status, game location, quality of opposition, or game period. The scoring increments were smaller than might be expected from a 2-minute numerical playing superiority. Psychological theories such as choking under pressure situations where good performance is expected could contribute to explain this finding. The final chapters of the thesis enumerate the main conclusions and underline the main practical applications that arise from the three studies. Lastly, limitations and future research directions are described.
Resumo:
Nonlinear-dynamical control techniques, also known as chaos control, have been used with great success to control a wide range of physical systems. Such techniques have been used to control the behavior of in vitro excitable biological tissue, suggesting their potential for clinical utility. However, the feasibility of using such techniques to control physiological processes has not been demonstrated in humans. Here we show that nonlinear-dynamical control can modulate human cardiac electrophysiological dynamics by rapidly stabilizing an unstable target rhythm. Specifically, in 52/54 control attempts in five patients, we successfully terminated pacing-induced period-2 atrioventricular-nodal conduction alternans by stabilizing the underlying unstable steady-state conduction. This proof-of-concept demonstration shows that nonlinear-dynamical control techniques are clinically feasible and provides a foundation for developing such techniques for more complex forms of clinical arrhythmia.
Resumo:
The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.
Resumo:
Chromosome bi-orientation at the metaphase spindle is essential for precise segregation of the genetic material. The process is error-prone, and error-correction mechanisms exist to switch misaligned chromosomes to the correct, bi-oriented configuration. Here, we analyze several possible dynamical scenarios to explore how cells might achieve correct bi-orientation in an efficient and robust manner. We first illustrate that tension-mediated feedback between the sister kinetochores can give rise to a bistable switch, which allows robust distinction between a loose attachment with low tension and a strong attachment with high tension. However, this mechanism has difficulties in explaining how bi-orientation is initiated starting from unattached kinetochores. We propose four possible mechanisms to overcome this problem (exploiting molecular noise; allowing an efficient attachment of kinetochores already in the absence of tension; a trial-and-error oscillation; and a stochastic bistable switch), and assess their impact on the bi-orientation process. Based on our results and supported by experimental data, we put forward a trial-and-error oscillation and a stochastic bistable switch as two elegant mechanisms with the potential to promote bi-orientation both efficiently and robustly.
Resumo:
Climatic changes are most pronounced in northern high latitude regions. Yet, there is a paucity of observational data, both spatially and temporally, such that regional-scale dynamics are not fully captured, limiting our ability to make reliable projections. In this study, a group of dynamical downscaling products were created for the period 1950 to 2100 to better understand climate change and its impacts on hydrology, permafrost, and ecosystems at a resolution suitable for northern Alaska. An ERA-interim reanalysis dataset and the Community Earth System Model (CESM) served as the forcing mechanisms in this dynamical downscaling framework, and the Weather Research & Forecast (WRF) model, embedded with an optimization for the Arctic (Polar WRF), served as the Regional Climate Model (RCM). This downscaled output consists of multiple climatic variables (precipitation, temperature, wind speed, dew point temperature, and surface air pressure) for a 10 km grid spacing at three-hour intervals. The modeling products were evaluated and calibrated using a bias-correction approach. The ERA-interim forced WRF (ERA-WRF) produced reasonable climatic variables as a result, yielding a more closely correlated temperature field than precipitation field when long-term monthly climatology was compared with its forcing and observational data. A linear scaling method then further corrected the bias, based on ERA-interim monthly climatology, and bias-corrected ERA-WRF fields were applied as a reference for calibration of both the historical and the projected CESM forced WRF (CESM-WRF) products. Biases, such as, a cold temperature bias during summer and a warm temperature bias during winter as well as a wet bias for annual precipitation that CESM holds over northern Alaska persisted in CESM-WRF runs. The linear scaling of CESM-WRF eventually produced high-resolution downscaling products for the Alaskan North Slope for hydrological and ecological research, together with the calibrated ERA-WRF run, and its capability extends far beyond that. Other climatic research has been proposed, including exploration of historical and projected climatic extreme events and their possible connections to low-frequency sea-atmospheric oscillations, as well as near-surface permafrost degradation and ice regime shifts of lakes. These dynamically downscaled, bias corrected climatic datasets provide improved spatial and temporal resolution data necessary for ongoing modeling efforts in northern Alaska focused on reconstructing and projecting hydrologic changes, ecosystem processes and responses, and permafrost thermal regimes. The dynamical downscaling methods presented in this study can also be used to create more suitable model input datasets for other sub-regions of the Arctic.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.
Resumo:
When making predictions with complex simulators it can be important to quantify the various sources of uncertainty. Errors in the structural specification of the simulator, for example due to missing processes or incorrect mathematical specification, can be a major source of uncertainty, but are often ignored. We introduce a methodology for inferring the discrepancy between the simulator and the system in discrete-time dynamical simulators. We assume a structural form for the discrepancy function, and show how to infer the maximum-likelihood parameter estimates using a particle filter embedded within a Monte Carlo expectation maximization (MCEM) algorithm. We illustrate the method on a conceptual rainfall-runoff simulator (logSPM) used to model the Abercrombie catchment in Australia. We assess the simulator and discrepancy model on the basis of their predictive performance using proper scoring rules. This article has supplementary material online. © 2011 International Biometric Society.
Resumo:
Diffusion processes are a family of continuous-time continuous-state stochastic processes that are in general only partially observed. The joint estimation of the forcing parameters and the system noise (volatility) in these dynamical systems is a crucial, but non-trivial task, especially when the system is nonlinear and multimodal. We propose a variational treatment of diffusion processes, which allows us to compute type II maximum likelihood estimates of the parameters by simple gradient techniques and which is computationally less demanding than most MCMC approaches. We also show how a cheap estimate of the posterior over the parameters can be constructed based on the variational free energy.
Resumo:
This thesis was focused on theoretical models of synchronization to cortical dynamics as measured by magnetoencephalography (MEG). Dynamical systems theory was used in both identifying relevant variables for brain coordination and also in devising methods for their quantification. We presented a method for studying interactions of linear and chaotic neuronal sources using MEG beamforming techniques. We showed that such sources can be accurately reconstructed in terms of their location, temporal dynamics and possible interactions. Synchronization in low-dimensional nonlinear systems was studied to explore specific correlates of functional integration and segregation. In the case of interacting dissimilar systems, relevant coordination phenomena involved generalized and phase synchronization, which were often intermittent. Spatially-extended systems were then studied. For locally-coupled dissimilar systems, as in the case of cortical columns, clustering behaviour occurred. Synchronized clusters emerged at different frequencies and their boundaries were marked through oscillation death. The macroscopic mean field revealed sharp spectral peaks at the frequencies of the clusters and broader spectral drops at their boundaries. These results question existing models of Event Related Synchronization and Desynchronization. We re-examined the concept of the steady-state evoked response following an AM stimulus. We showed that very little variability in the AM following response could be accounted by system noise. We presented a methodology for detecting local and global nonlinear interactions from MEG data in order to account for residual variability. We found crosshemispheric nonlinear interactions of ongoing cortical rhythms concurrent with the stimulus and interactions of these rhythms with the following AM responses. Finally, we hypothesized that holistic spatial stimuli would be accompanied by the emergence of clusters in primary visual cortex resulting in frequency-specific MEG oscillations. Indeed, we found different frequency distributions in induced gamma oscillations for different spatial stimuli, which was suggestive of temporal coding of these spatial stimuli. Further, we addressed the bursting character of these oscillations, which was suggestive of intermittent nonlinear dynamics. However, we did not observe the characteristic-3/2 power-law scaling in the distribution of interburst intervals. Further, this distribution was only seldom significantly different to the one obtained in surrogate data, where nonlinear structure was destroyed. In conclusion, the work presented in this thesis suggests that advances in dynamical systems theory in conjunction with developments in magnetoencephalography may facilitate a mapping between levels of description int he brain. this may potentially represent a major advancement in neuroscience.
Resumo:
This thesis presents the results from an investigation into the merits of analysing Magnetoencephalographic (MEG) data in the context of dynamical systems theory. MEG is the study of both the methods for the measurement of minute magnetic flux variations at the scalp, resulting from neuro-electric activity in the neocortex, as well as the techniques required to process and extract useful information from these measurements. As a result of its unique mode of action - by directly measuring neuronal activity via the resulting magnetic field fluctuations - MEG possesses a number of useful qualities which could potentially make it a powerful addition to any brain researcher's arsenal. Unfortunately, MEG research has so far failed to fulfil its early promise, being hindered in its progress by a variety of factors. Conventionally, the analysis of MEG has been dominated by the search for activity in certain spectral bands - the so-called alpha, delta, beta, etc that are commonly referred to in both academic and lay publications. Other efforts have centred upon generating optimal fits of "equivalent current dipoles" that best explain the observed field distribution. Many of these approaches carry the implicit assumption that the dynamics which result in the observed time series are linear. This is despite a variety of reasons which suggest that nonlinearity might be present in MEG recordings. By using methods that allow for nonlinear dynamics, the research described in this thesis avoids these restrictive linearity assumptions. A crucial concept underpinning this project is the belief that MEG recordings are mere observations of the evolution of the true underlying state, which is unobservable and is assumed to reflect some abstract brain cognitive state. Further, we maintain that it is unreasonable to expect these processes to be adequately described in the traditional way: as a linear sum of a large number of frequency generators. One of the main objectives of this thesis will be to prove that much more effective and powerful analysis of MEG can be achieved if one were to assume the presence of both linear and nonlinear characteristics from the outset. Our position is that the combined action of a relatively small number of these generators, coupled with external and dynamic noise sources, is more than sufficient to account for the complexity observed in the MEG recordings. Another problem that has plagued MEG researchers is the extremely low signal to noise ratios that are obtained. As the magnetic flux variations resulting from actual cortical processes can be extremely minute, the measuring devices used in MEG are, necessarily, extremely sensitive. The unfortunate side-effect of this is that even commonplace phenomena such as the earth's geomagnetic field can easily swamp signals of interest. This problem is commonly addressed by averaging over a large number of recordings. However, this has a number of notable drawbacks. In particular, it is difficult to synchronise high frequency activity which might be of interest, and often these signals will be cancelled out by the averaging process. Other problems that have been encountered are high costs and low portability of state-of-the- art multichannel machines. The result of this is that the use of MEG has, hitherto, been restricted to large institutions which are able to afford the high costs associated with the procurement and maintenance of these machines. In this project, we seek to address these issues by working almost exclusively with single channel, unaveraged MEG data. We demonstrate the applicability of a variety of methods originating from the fields of signal processing, dynamical systems, information theory and neural networks, to the analysis of MEG data. It is noteworthy that while modern signal processing tools such as independent component analysis, topographic maps and latent variable modelling have enjoyed extensive success in a variety of research areas from financial time series modelling to the analysis of sun spot activity, their use in MEG analysis has thus far been extremely limited. It is hoped that this work will help to remedy this oversight.