948 resultados para Dynamic apnea hypopnea index time series
Resumo:
This layer is a georeferenced raster image from the historic paper map series entitled: Lutece ... plan de la ville de Paris ..., par M.L.C.D.L.M. ; A. Coquart, delineavit et sculp. It was published by Jean & Pierre Cot in 1705. Scale [ca. 1:10,000]. This image is of map 6 entitled: Sixiême plan de la ville de Paris et ses accroissements depuis le commencement du régne de Charles VII. l'an 1422 jusqu'a la fin du régne d'Henry III. l'an 1589: tiré des lettres patentes qui ont ordonné les ouvrages, des contrats passez avec les entrepreneurs, des registres de la chambre des comptes de l'histoire et des memoires du temps. The map represents Paris, 1422 to 1589. Map in French.The image inside the map neatline is georeferenced to the surface of the earth and fit to the European Datum 1950, Universal Transverse Mercator (UTM) Zone 31N projected coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, towns and villages, roads, built-up areas and selected buildings, fortification, ground cover, and more. Relief shown by hachures. Includes index, text, and notes.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
In this paper, we discuss some practical implications for implementing adaptable network algorithms applied to non-stationary time series problems. Using electricity load data and training with the extended Kalman filter, we demonstrate that the dynamic model-order increment procedure of the resource allocating RBF network (RAN) is highly sensitive to the parameters of the novelty criterion. We investigate the use of system noise and forgetting factors for increasing the plasticity of the Kalman filter training algorithm, and discuss the consequences for on-line model order selection. We also find that a recently-proposed alternative novelty criterion, found to be more robust in stationary environments, does not fare so well in the non-stationary case due to the need for filter adaptability during training.
Resumo:
We present in this paper ideas to tackle the problem of analysing and forecasting nonstationary time series within the financial domain. Accepting the stochastic nature of the underlying data generator we assume that the evolution of the generator's parameters is restricted on a deterministic manifold. Therefore we propose methods for determining the characteristics of the time-localised distribution. Starting with the assumption of a static normal distribution we refine this hypothesis according to the empirical results obtained with the methods anc conclude with the indication of a dynamic non-Gaussian behaviour with varying dependency for the time series under consideration.
Resumo:
The deficiencies of stationary models applied to financial time series are well documented. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We use a dynamic switching (modelled by a hidden Markov model) combined with a linear dynamical system in a hybrid switching state space model (SSSM) and discuss the practical details of training such models with a variational EM algorithm due to [Ghahramani and Hilton,1998]. The performance of the SSSM is evaluated on several financial data sets and it is shown to improve on a number of existing benchmark methods.
Resumo:
In the analysis and prediction of many real-world time series, the assumption of stationarity is not valid. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We introduce a new model which combines a dynamic switching (controlled by a hidden Markov model) and a non-linear dynamical system. We show how to train this hybrid model in a maximum likelihood approach and evaluate its performance on both synthetic and financial data.
Resumo:
Amongst all the objectives in the study of time series, uncovering the dynamic law of its generation is probably the most important. When the underlying dynamics are not available, time series modelling consists of developing a model which best explains a sequence of observations. In this thesis, we consider hidden space models for analysing and describing time series. We first provide an introduction to the principal concepts of hidden state models and draw an analogy between hidden Markov models and state space models. Central ideas such as hidden state inference or parameter estimation are reviewed in detail. A key part of multivariate time series analysis is identifying the delay between different variables. We present a novel approach for time delay estimating in a non-stationary environment. The technique makes use of hidden Markov models and we demonstrate its application for estimating a crucial parameter in the oil industry. We then focus on hybrid models that we call dynamical local models. These models combine and generalise hidden Markov models and state space models. Probabilistic inference is unfortunately computationally intractable and we show how to make use of variational techniques for approximating the posterior distribution over the hidden state variables. Experimental simulations on synthetic and real-world data demonstrate the application of dynamical local models for segmenting a time series into regimes and providing predictive distributions.
Resumo:
In this study, a new entropy measure known as kernel entropy (KerEnt), which quantifies the irregularity in a series, was applied to nocturnal oxygen saturation (SaO 2) recordings. A total of 96 subjects suspected of suffering from sleep apnea-hypopnea syndrome (SAHS) took part in the study: 32 SAHS-negative and 64 SAHS-positive subjects. Their SaO 2 signals were separately processed by means of KerEnt. Our results show that a higher degree of irregularity is associated to SAHS-positive subjects. Statistical analysis revealed significant differences between the KerEnt values of SAHS-negative and SAHS-positive groups. The diagnostic utility of this parameter was studied by means of receiver operating characteristic (ROC) analysis. A classification accuracy of 81.25% (81.25% sensitivity and 81.25% specificity) was achieved. Repeated apneas during sleep increase irregularity in SaO 2 data. This effect can be measured by KerEnt in order to detect SAHS. This non-linear measure can provide useful information for the development of alternative diagnostic techniques in order to reduce the demand for conventional polysomnography (PSG). © 2011 IEEE.
Resumo:
In this paper, we discuss some practical implications for implementing adaptable network algorithms applied to non-stationary time series problems. Two real world data sets, containing electricity load demands and foreign exchange market prices, are used to test several different methods, ranging from linear models with fixed parameters, to non-linear models which adapt both parameters and model order on-line. Training with the extended Kalman filter, we demonstrate that the dynamic model-order increment procedure of the resource allocating RBF network (RAN) is highly sensitive to the parameters of the novelty criterion. We investigate the use of system noise for increasing the plasticity of the Kalman filter training algorithm, and discuss the consequences for on-line model order selection. The results of our experiments show that there are advantages to be gained in tracking real world non-stationary data through the use of more complex adaptive models.
Resumo:
In the face of global population growth and the uneven distribution of water supply, a better knowledge of the spatial and temporal distribution of surface water resources is critical. Remote sensing provides a synoptic view of ongoing processes, which addresses the intricate nature of water surfaces and allows an assessment of the pressures placed on aquatic ecosystems. However, the main challenge in identifying water surfaces from remotely sensed data is the high variability of spectral signatures, both in space and time. In the last 10 years only a few operational methods have been proposed to map or monitor surface water at continental or global scale, and each of them show limitations. The objective of this study is to develop and demonstrate the adequacy of a generic multi-temporal and multi-spectral image analysis method to detect water surfaces automatically, and to monitor them in near-real-time. The proposed approach, based on a transformation of the RGB color space into HSV, provides dynamic information at the continental scale. The validation of the algorithm showed very few omission errors and no commission errors. It demonstrates the ability of the proposed algorithm to perform as effectively as human interpretation of the images. The validation of the permanent water surface product with an independent dataset derived from high resolution imagery, showed an accuracy of 91.5% and few commission errors. Potential applications of the proposed method have been identified and discussed. The methodology that has been developed 27 is generic: it can be applied to sensors with similar bands with good reliability, and minimal effort. Moreover, this experiment at continental scale showed that the methodology is efficient for a large range of environmental conditions. Additional preliminary tests over other continents indicate that the proposed methodology could also be applied at the global scale without too many difficulties
Resumo:
Limited literature regarding parameter estimation of dynamic systems has been identified as the central-most reason for not having parametric bounds in chaotic time series. However, literature suggests that a chaotic system displays a sensitive dependence on initial conditions, and our study reveals that the behavior of chaotic system: is also sensitive to changes in parameter values. Therefore, parameter estimation technique could make it possible to establish parametric bounds on a nonlinear dynamic system underlying a given time series, which in turn can improve predictability. By extracting the relationship between parametric bounds and predictability, we implemented chaos-based models for improving prediction in time series. ^ This study describes work done to establish bounds on a set of unknown parameters. Our research results reveal that by establishing parametric bounds, it is possible to improve the predictability of any time series, although the dynamics or the mathematical model of that series is not known apriori. In our attempt to improve the predictability of various time series, we have established the bounds for a set of unknown parameters. These are: (i) the embedding dimension to unfold a set of observation in the phase space, (ii) the time delay to use for a series, (iii) the number of neighborhood points to use for avoiding detection of false neighborhood and, (iv) the local polynomial to build numerical interpolation functions from one region to another. Using these bounds, we are able to get better predictability in chaotic time series than previously reported. In addition, the developments of this dissertation can establish a theoretical framework to investigate predictability in time series from the system-dynamics point of view. ^ In closing, our procedure significantly reduces the computer resource usage, as the search method is refined and efficient. Finally, the uniqueness of our method lies in its ability to extract chaotic dynamics inherent in non-linear time series by observing its values. ^
Resumo:
The concentrations, distributions, and stable carbon isotopes (d13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and d13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25-C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7 per mil (±1Sigma standard deviation) spread in d13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52-0.94). In contrast, plant-dominated n-alcohols (C26-C36) and n-alkanoic acids (C26-C36) exhibit stronger positive correlations (r = 0.70-0.99) between homologue concentrations and depleted d13C values (individual homologues average <= -31.3 per mil and -30.8 per mil, respectively), with lower d13C variability across chain-lengths (2.6 ± 0.6 per mil and 2.0 ± 1.1 per mil, respectively). All individual plant-wax lipids show little temporal d13C variability throughout the time-series (1 Sigma <= 0.9 per mil), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19-58% of total plant-wax lipids) and n-alkanoic acids (26-76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5-16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.