967 resultados para Dynamic Modelling
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
Existing digital rights management (DRM) systems, initiatives like Creative Commons or research works as some digital rights ontologies provide limited support for content value chains modelling and management. This is becoming a critical issue as content markets start to profit from the possibilities of digital networks and the World Wide Web. The objective is to support the whole copyrighted content value chain across enterprise or business niches boundaries. Our proposal provides a framework that accommodates copyright law and a rich creation model in order to cope with all the creation life cycle stages. The dynamic aspects of value chains are modelled using a hybrid approach that combines ontology-based and rule-based mechanisms. The ontology implementation is based on Web Ontology Language and Description Logic (OWL-DL) reasoners, are directly used for license checking. On the other hand, for more complex aspects of the dynamics of content value chains, rule languages are the choice.
Resumo:
Synchronous motors are used mainly in large drives, for example in ship propulsion systems and in steel factories' rolling mills because of their high efficiency, high overload capacity and good performance in the field weakening range. This, however, requires an extremely good torque control system. A fast torque response and a torque accuracy are basic requirements for such a drive. For large power, high dynamic performance drives the commonly known principle of field oriented vector control has been used solely hitherto, but nowadays it is not the only way to implement such a drive. A new control method Direct Torque Control (DTC) has also emerged. The performance of such a high quality torque control as DTC in dynamically demanding industrial applications is mainly based on the accurate estimate of the various flux linkages' space vectors. Nowadays industrial motor control systems are real time applications with restricted calculation capacity. At the same time the control system requires a simple, fast calculable and reasonably accurate motor model. In this work a method to handle these problems in a Direct Torque Controlled (DTC) salient pole synchronous motor drive is proposed. A motor model which combines the induction law based "voltage model" and motor inductance parameters based "current model" is presented. The voltage model operates as a main model and is calculated at a very fast sampling rate (for example 40 kHz). The stator flux linkage calculated via integration from the stator voltages is corrected using the stator flux linkage computed from the current model. The current model acts as a supervisor that prevents only the motor stator flux linkage from drifting erroneous during longer time intervals. At very low speeds the role of the current model is emphasised but, nevertheless, the voltage model always stays the main model. At higher speeds the function of the current model correction is to act as a stabiliser of the control system. The current model contains a set of inductance parameters which must be known. The validation of the current model in steady state is not self evident. It depends on the accuracy of the saturated value of the inductances. Parameter measurement of the motor model where the supply inverter is used as a measurement signal generator is presented. This so called identification run can be performed prior to delivery or during drive commissioning. A derivation method for the inductance models used for the representation of the saturation effects is proposed. The performance of the electrically excited synchronous motor supplied with the DTC inverter is proven with experimental results. It is shown that it is possible to obtain a good static accuracy of the DTC's torque controller for an electrically excited synchronous motor. The dynamic response is fast and a new operation point is achieved without oscillation. The operation is stable throughout the speed range. The modelling of the magnetising inductance saturation is essential and cross saturation has to be considered as well. The effect of cross saturation is very significant. A DTC inverter can be used as a measuring equipment and the parameters needed for the motor model can be defined by the inverter itself. The main advantage is that the parameters defined are measured in similar magnetic operation conditions and no disagreement between the parameters will exist. The inductance models generated are adequate to meet the requirements of dynamically demanding drives.
Resumo:
Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ('ORCHIDEE'), and the other a forest growth model particularly developed for Mediterranean simulations ('GOTILWA+'), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.
Resumo:
The results shown in this thesis are based on selected publications of the 2000s decade. The work was carried out in several national and EC funded public research projects and in close cooperation with industrial partners. The main objective of the thesis was to study and quantify the most important phenomena of circulating fluidized bed combustors by developing and applying proper experimental and modelling methods using laboratory scale equipments. An understanding of the phenomena plays an essential role in the development of combustion and emission performance, and the availability and controls of CFB boilers. Experimental procedures to study fuel combustion behaviour under CFB conditions are presented in the thesis. Steady state and dynamic measurements under well controlled conditions were carried out to produce the data needed for the development of high efficiency, utility scale CFB technology. The importance of combustion control and furnace dynamics is emphasized when CFB boilers are scaled up with a once through steam cycle. Qualitative information on fuel combustion characteristics was obtained directly by comparing flue gas oxygen responses during the impulse change experiments with fuel feed. A one-dimensional, time dependent model was developed to analyse the measurement data Emission formation was studied combined with fuel combustion behaviour. Correlations were developed for NO, N2O, CO and char loading, as a function of temperature and oxygen concentration in the bed area. An online method to characterize char loading under CFB conditions was developed and validated with the pilot scale CFB tests. Finally, a new method to control air and fuel feeds in CFB combustion was introduced. The method is based on models and an analysis of the fluctuation of the flue gas oxygen concentration. The effect of high oxygen concentrations on fuel combustion behaviour was also studied to evaluate the potential of CFB boilers to apply oxygenfiring technology to CCS. In future studies, it will be necessary to go through the whole scale up chain from laboratory phenomena devices through pilot scale test rigs to large scale, commercial boilers in order to validate the applicability and scalability of the, results. This thesis shows the chain between the laboratory scale phenomena test rig (bench scale) and the CFB process test rig (pilot). CFB technology has been scaled up successfully from an industrial scale to a utility scale during the last decade. The work shown in the thesis, for its part, has supported the development by producing new detailed information on combustion under CFB conditions.
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
The increasing complexity of controller systems, applied in modern passenger cars, requires adequate simulation tools. The toolset FASIM_C++, described in the following, uses complex vehicle models in three-dimensional vehicle dynamics simulation. The structure of the implemented dynamic models and the generation of the equations of motion applying the method of kinematic differentials is explained briefly. After a short introduction in methods of event handling, several vehicle models and applications like controller development, roll-over simulation and real-time-simulation are explained. Finally some simulation results are presented.
Resumo:
The tightening competition and increasing dynamism have created an emerging need for flexible asset management. This means that the changes of market demand should be responded to with adjustments in the amount of assets tied to the balance sheets of companies. On the other hand, industrial maintenance has recently experienced drastic changes, which have led to an increase in the number of maintenance networks (consisting of customer companies that buy maintenance services, as well as various supplier companies) and inter-organizational partnerships. However, the research on maintenance networks has not followed the changes in the industry. Instead, there is a growing need for new ways of collaboration between partnering companies to enhance the competitiveness of the whole maintenance network. In addition, it is more and more common for companies to pursue lean operations in their businesses. This thesis shows how flexible asset management can increase the profitability of maintenance companies and networks under dynamic operating conditions, and how the additional value can then be shared between the network partners. Firstly, I have conducted a systematic literature review to identify what kind of requirements for asset management models are set by the increasing dynamism. Then I have responded to these requirements by constructing an analytical model for flexible asset management, linking asset management to the profitability and financial state of a company. The thesis uses the model to show how flexible asset management can increase profitability in maintenance companies and networks, and how the created value can be shared in the networks to reach a win-win situation. The research indicates that the existing models for asset management are heterogeneous by nature due to the various definitions of ‘asset management’. I conclude that there is a need for practical asset management models which address assets comprehensively with an inter-organizational, strategic view. The comprehensive perspective, taking all kinds of asset types into account, is needed to integrate the research on asset management with the strategic management of companies and networks. I will show that maintenance companies can improve their profitability by increasing the flexibility of their assets. In maintenance networks, reorganizing the ownership of the assets among the different network partners can create additional value. Finally, I will introduce flexible asset management contracts for maintenance networks. These contracts address the value sharing related to reorganizing the ownership of assets according to the principles of win-win situations.
Resumo:
Twenty-four surgical patients of both sexes without cardiac, hepatic, renal or endocrine dysfunctions were divided into two groups: 10 cardiac surgical patients submitted to myocardial revascularization and cardiopulmonary bypass (CPB), 3 females and 7 males aged 65 ± 11 years, 74 ± 16 kg body weight, 166 ± 9 cm height and 1.80 ± 0.21 m2 body surface area (BSA), and control, 14 surgical patients not submitted to CPB, 11 female and 3 males aged 41 ± 14 years, 66 ± 14 kg body weight, 159 ± 9 cm height and 1.65 ± 0.16 m2 BSA (mean ± SD). Sodium diclofenac (1 mg/kg, im Voltaren 75® twice a day) was administered to patients in the Recovery Unit 48 h after surgery. Venous blood samples were collected during a period of 0-12 h and analgesia was measured by the visual analogue scale (VAS) during the same period. Plasma diclofenac levels were measured by high performance liquid chromatography. A two-compartment open model was applied to obtain the plasma decay curve and to estimate kinetic parameters. Plasma diclofenac protein binding decreased whereas free plasma diclofenac levels were increased five-fold in CPB patients. Data obtained for analgesia reported as the maximum effect (EMAX) were: 25% VAS (CPB) vs 10% VAS (control), P<0.05, median measured by the visual analogue scale where 100% is equivalent to the highest level of pain. To correlate the effect versus plasma diclofenac levels, the EMAX sigmoid model was applied. A prolongation of the mean residence time for maximum effect (MRTEMAX) was observed without any change in lag-time in CPB in spite of the reduced analgesia reported for these patients, during the time-dose interval. In conclusion, the extent of plasma diclofenac protein binding was influenced by CPB with clinically relevant kinetic-dynamic consequences
Resumo:
The energy consumption of IT equipments is becoming an issue of increasing importance. In particular, network equipments such as routers and switches are major contributors to the energy consumption of internet. Therefore it is important to understand how the relationship between input parameters such as bandwidth, number of active ports, traffic-load, hibernation-mode and their impact on energy consumption of a switch. In this paper, the energy consumption of a switch is analyzed in extensive experiments. A fuzzy rule-based model of energy consumption of a switch is proposed based on the result of experiments. The model can be used to predict the energy saving when deploying new switches by controlling the parameters to achieve desired energy consumption and subsequent performance. Furthermore, the model can also be used for further researches on energy saving techniques such as energy-efficient routing protocol, dynamic link shutdown, etc.
Resumo:
The aim of this study was to contribute to the current knowledge-based theory by focusing on a research gap that exists in the empirically proven determination of the simultaneous but differentiable effects of intellectual capital (IC) assets and knowledge management (KM) practices on organisational performance (OP). The analysis was built on the past research and theoreticised interactions between the latent constructs specified using the survey-based items that were measured from a sample of Finnish companies for IC and KM and the dependent construct for OP determined using information available from financial databases. Two widely used and commonly recommended measures in the literature on management science, i.e. the return on total assets (ROA) and the return on equity (ROE), were calculated for OP. Thus the investigation of the relationship between IC and KM impacting OP in relation to the hypotheses founded was possible to conduct using objectively derived performance indicators. Using financial OP measures also strengthened the dynamic features of data needed in analysing simultaneous and causal dependences between the modelled constructs specified using structural path models. The estimates were obtained for the parameters of structural path models using a partial least squares-based regression estimator. Results showed that the path dependencies between IC and OP or KM and OP were always insignificant when analysed separate to any other interactions or indirect effects caused by simultaneous modelling and regardless of the OP measure used that was either ROA or ROE. The dependency between the constructs for KM and IC appeared to be very strong and was always significant when modelled simultaneously with other possible interactions between the constructs and using either ROA or ROE to define OP. This study, however, did not find statistically unambiguous evidence for proving the hypothesised causal mediation effects suggesting, for instance, that the effects of KM practices on OP are mediated by the IC assets. Due to the fact that some indication about the fluctuations of causal effects was assessed, it was concluded that further studies are needed for verifying the fundamental and likely hidden causal effects between the constructs of interest. Therefore, it was also recommended that complementary modelling and data processing measures be conducted for elucidating whether the mediation effects occur between IC, KM and OP, the verification of which requires further investigations of measured items and can be build on the findings of this study.
Resumo:
Transmission system operators and distribution system operators are experiencing new challenges in terms of reliability, power quality, and cost efficiency. Although the potential of energy storages to face those challenges is recognized, the economic implications are still obscure, which introduce the risk into the business models. This thesis aims to investigate the technical and economic value indicators of lithium-ion battery energy storage systems (BESS) in grid-scale applications. In order to do that, a comprehensive performance lithium-ion BESS model with degradation effects estimation is developed. The model development process implies literature review on lifetime modelling, use, and modification of previous study progress, building the additional system parts and integrating it into a complete tool. The constructed model is capable of describing the dynamic behavior of the BESS voltage, state of charge, temperature and capacity loss. Five control strategies for BESS unit providing primary frequency regulation are implemented, in addition to the model. The questions related to BESS dimensioning and the end of life (EoL) criterion are addressed. Simulations are performed with one-month real frequency data acquired from Fingrid. The lifetime and cost-benefit analysis of the simulation results allow to compare and determine the preferable control strategy. Finally, the study performs the sensitivity analysis of economic profitability with variable size, EoL and system price. The research reports that BESS can be profitable in certain cases and presents the recommendations.
Resumo:
The current study is aimed at the development of a theoretical simulation tool based on Discrete Element Method (DEM) to 'interpret granular dynamics of solid bed in the cross section of the horizontal rotating cylinder at the microscopic level and subsequently apply this model to establish the transition behaviour, mixing and segregation.The simulation of the granular motion developed in this work is based on solving Newton's equation of motion for each particle in the granular bed subjected to the collisional forces, external forces and boundary forces. At every instant of time, the forces are tracked and the positions velocities and accelarations of each partcle is The software code for this simulation is written in VISUAL FORTRAN 90 After checking the validity of the code with special tests, it is used to investigate the transition behaviour of granular solids motion in the cross section of a rotating cylinder for various rotational speeds and fill fraction.This work is hence directed towards a theoretical investigation based on Discrete Element Method (DEM) of the motion of granular solids in the radial direction of the horizontal cylinder to elucidate the relationship between the operating parameters of the rotating cylinder geometry and physical properties ofthe granular solid.The operating parameters of the rotating cylinder include the various rotational velocities of the cylinder and volumetric fill. The physical properties of the granular solids include particle sizes, densities, stiffness coefficients, and coefficient of friction Further the work highlights the fundamental basis for the important phenomena of the system namely; (i) the different modes of solids motion observed in a transverse crosssection of the rotating cylinder for various rotational speeds, (ii) the radial mixing of the granular solid in terms of active layer depth (iii) rate coefficient of mixing as well as the transition behaviour in terms of the bed turnover time and rotational speed and (iv) the segregation mechanisms resulting from differences in the size and density of particles.The transition behaviour involving its six different modes of motion of the granular solid bed is quantified in terms of Froude number and the results obtained are validated with experimental and theoretical results reported in the literature The transition from slumping to rolling mode is quantified using the bed turnover time and a linear relationship is established between the bed turn over time and the inverse of the rotational speed of the cylinder as predicted by Davidson et al. [2000]. The effect of the rotational speed, fill fraction and coefficient of friction on the dynamic angle of repose are presented and discussed. The variation of active layer depth with respect to fill fraction and rotational speed have been investigated. The results obtained through simulation are compared with the experimental results reported by Van Puyvelde et. at. [2000] and Ding et at. [2002].The theoretical model has been further extended, to study the rmxmg and segregation in the transverse direction for different particle sizes and their size ratios. The effect of fill fraction and rotational speed on the transverse mixing behaviour is presented in the form of a mixing index and mixing kinetics curve. The segregation pattern obtained by the simulation of the granular solid bed with respect to the rotational speed of the cylinder is presented both in graphical and numerical forms. The segregation behaviour of the granular solid bed with respect to particle size, density and volume fraction of particle size has been investigated. Several important macro parameters characterising segregation such as mixing index, percolation index and segregation index have been derived from the simulation tool based on first principles developed in this work.
Resumo:
Upgrading two widely used standard plastics, polypropylene (PP) and high density polyethylene (HDPE), and generating a variety of useful engineering materials based on these blends have been the main objective of this study. Upgradation was effected by using nanomodifiers and/or fibrous modifiers. PP and HDPE were selected for modification due to their attractive inherent properties and wide spectrum of use. Blending is the engineered method of producing new materials with tailor made properties. It has the advantages of both the materials. PP has high tensile and flexural strength and the HDPE acts as an impact modifier in the resultant blend. Hence an optimized blend of PP and HDPE was selected as the matrix material for upgradation. Nanokaolinite clay and E-glass fibre were chosen for modifying PP/HDPE blend. As the first stage of the work, the mechanical, thermal, morphological, rheological, dynamic mechanical and crystallization characteristics of the polymer nanocomposites prepared with PP/HDPE blend and different surface modified nanokaolinite clay were analyzed. As the second stage of the work, the effect of simultaneous inclusion of nanokaolinite clay (both N100A and N100) and short glass fibres are investigated. The presence of nanofiller has increased the properties of hybrid composites to a greater extent than micro composites. As the last stage, micromechanical modeling of both nano and hybrid A composite is carried out to analyze the behavior of the composite under load bearing conditions. These theoretical analyses indicate that the polymer-nanoclay interfacial characteristics partially converge to a state of perfect interfacial bonding (Takayanagi model) with an iso-stress (Reuss IROM) response. In the case of hybrid composites the experimental data follows the trend of Halpin-Tsai model. This implies that matrix and filler experience varying amount of strain and interfacial adhesion between filler and matrix and also between the two fillers which play a vital role in determining the modulus of the hybrid composites.A significant observation from this study is that the requirement of higher fibre loading for efficient reinforcement of polymers can be substantially reduced by the presence of nanofiller together with much lower fibre content in the composite. Hybrid composites with both nanokaolinite clay and micron sized E-glass fibre as reinforcements in PP/HDPE matrix will generate a novel class of high performance, cost effective engineering material.
Resumo:
Context awareness, dynamic reconfiguration at runtime and heterogeneity are key characteristics of future distributed systems, particularly in ubiquitous and mobile computing scenarios. The main contributions of this dissertation are theoretical as well as architectural concepts facilitating information exchange and fusion in heterogeneous and dynamic distributed environments. Our main focus is on bridging the heterogeneity issues and, at the same time, considering uncertain, imprecise and unreliable sensor information in information fusion and reasoning approaches. A domain ontology is used to establish a common vocabulary for the exchanged information. We thereby explicitly support different representations for the same kind of information and provide Inter-Representation Operations that convert between them. Special account is taken of the conversion of associated meta-data that express uncertainty and impreciseness. The Unscented Transformation, for example, is applied to propagate Gaussian normal distributions across highly non-linear Inter-Representation Operations. Uncertain sensor information is fused using the Dempster-Shafer Theory of Evidence as it allows explicit modelling of partial and complete ignorance. We also show how to incorporate the Dempster-Shafer Theory of Evidence into probabilistic reasoning schemes such as Hidden Markov Models in order to be able to consider the uncertainty of sensor information when deriving high-level information from low-level data. For all these concepts we provide architectural support as a guideline for developers of innovative information exchange and fusion infrastructures that are particularly targeted at heterogeneous dynamic environments. Two case studies serve as proof of concept. The first case study focuses on heterogeneous autonomous robots that have to spontaneously form a cooperative team in order to achieve a common goal. The second case study is concerned with an approach for user activity recognition which serves as baseline for a context-aware adaptive application. Both case studies demonstrate the viability and strengths of the proposed solution and emphasize that the Dempster-Shafer Theory of Evidence should be preferred to pure probability theory in applications involving non-linear Inter-Representation Operations.