947 resultados para Distributed Order Differential Equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting from the radiative transfer equation, we obtain an analytical solution for both the free propagator along one of the axes and an arbitrary phase function in the Fourier-Laplace domain. We also find the effective absorption parameter, which turns out to be very different from the one provided by the diffusion approximation. We finally present an analytical approximation procedure and obtain a differential equation that accurately reproduces the transport process. We test our approximations by means of simulations that use the Henyey-Greenstein phase function with very satisfactory results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we analyze the time of ruin in a risk process with the interclaim times being Erlang(n) distributed and a constant dividend barrier. We obtain an integro-differential equation for the Laplace Transform of the time of ruin. Explicit solutions for the moments of the time of ruin are presented when the individual claim amounts have a distribution with rational Laplace transform. Finally, some numerical results and a compare son with the classical risk model, with interclaim times following an exponential distribution, are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we establish the existence and uniqueness of a solution for different types of stochastic differential equation with random initial conditions and random coefficients. The stochastic integral is interpreted as a generalized Stratonovich integral, and the techniques used to derive these results are mainly based on the path properties of the Brownian motion, and the definition of the Stratonovich integral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Cauchy problem for a stochastic delay differential equation driven by a fractional Brownian motion with Hurst parameter H>¿. We prove an existence and uniqueness result for this problem, when the coefficients are sufficiently regular. Furthermore, if the diffusion coefficient is bounded away from zero and the coefficients are smooth functions with bounded derivatives of all orders, we prove that the law of the solution admits a smooth density with respect to Lebesgue measure on R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The known properties of diffusion on fractals are reviewed in order to give a general outlook of these dynamic processes. After that, we propose a description developed in the context of the intrinsic metric of fractals, which leads us to a differential equation able to describe diffusion in real fractals in the asymptotic regime. We show that our approach has a stronger physical justification than previous works on this field. The most important result we present is the introduction of a dependence on time and space for the conductivity in fractals, which is deduced by scaling arguments and supported by computer simulations. Finally, the diffusion equation is used to introduce the possibility of reaction-diffusion processes on fractals and analyze their properties. Specifically, an analytic expression for the speed of the corresponding travelling fronts, which can be of great interest for application purposes, is derived

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nous présentons une nouvelle approche pour formuler et calculer le temps de séparation des événements utilisé dans l’analyse et la vérification de différents systèmes cycliques et acycliques sous des contraintes linéaires-min-max avec des composants ayant des délais finis et infinis. Notre approche consiste à formuler le problème sous la forme d’un programme entier mixte, puis à utiliser le solveur Cplex pour avoir les temps de séparation entre les événements. Afin de démontrer l’utilité en pratique de notre approche, nous l’avons utilisée pour la vérification et l’analyse d’une puce asynchrone d’Intel de calcul d’équations différentielles. Comparée aux travaux précédents, notre approche est basée sur une formulation exacte et elle permet non seulement de calculer le maximum de séparation, mais aussi de trouver un ordonnancement cyclique et de calculer les temps de séparation correspondant aux différentes périodes possibles de cet ordonnancement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ce mémoire est une partie d’un programme de recherche qui étudie la superintégrabilité des systèmes avec spin. Plus particulièrement, nous nous intéressons à un hamiltonien avec interaction spin-orbite en trois dimensions admettant une intégrale du mouvement qui est un polynôme matriciel d’ordre deux dans l’impulsion. Puisque nous considérons un hamiltonien invariant sous rotation et sous parité, nous classifions les intégrales du mouvement selon des multiplets irréductibles de O(3). Nous calculons le commutateur entre l’hamiltonien et un opérateur général d’ordre deux dans l’impulsion scalaire, pseudoscalaire, vecteur et pseudovecteur. Nous donnons la classification complète des systèmes admettant des intégrales du mouvement scalaire et vectorielle. Nous trouvons une condition nécessaire à remplir pour le potentiel sous forme d’une équation différentielle pour les cas pseudo-scalaire et pseudo-vectoriel. Nous utilisons la réduction par symétrie pour obtenir des solutions particulières de ces équations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le contenu de cette thèse est divisé de la façon suivante. Après un premier chapitre d’introduction, le Chapitre 2 est consacré à introduire aussi simplement que possible certaines des théories qui seront utilisées dans les deux premiers articles. Dans un premier temps, nous discuterons des points importants pour la construction de l’intégrale stochastique par rapport aux semimartingales avec paramètre spatial. Ensuite, nous décrirons les principaux résultats de la théorie de l’évaluation en monde neutre au risque et, finalement, nous donnerons une brève description d’une méthode d’optimisation connue sous le nom de dualité. Les Chapitres 3 et 4 traitent de la modélisation de l’illiquidité et font l’objet de deux articles. Le premier propose un modèle en temps continu pour la structure et le comportement du carnet d’ordres limites. Le comportement du portefeuille d’un investisseur utilisant des ordres de marché est déduit et des conditions permettant d’éliminer les possibilités d’arbitrages sont données. Grâce à la formule d’Itô généralisée il est aussi possible d’écrire la valeur du portefeuille comme une équation différentielle stochastique. Un exemple complet de modèle de marché est présenté de même qu’une méthode de calibrage. Dans le deuxième article, écrit en collaboration avec Bruno Rémillard, nous proposons un modèle similaire mais cette fois-ci en temps discret. La question de tarification des produits dérivés est étudiée et des solutions pour le prix des options européennes de vente et d’achat sont données sous forme explicite. Des conditions spécifiques à ce modèle qui permettent d’éliminer l’arbitrage sont aussi données. Grâce à la méthode duale, nous montrons qu’il est aussi possible d’écrire le prix des options européennes comme un problème d’optimisation d’une espérance sur en ensemble de mesures de probabilité. Le Chapitre 5 contient le troisième article de la thèse et porte sur un sujet différent. Dans cet article, aussi écrit en collaboration avec Bruno Rémillard, nous proposons une méthode de prévision des séries temporelles basée sur les copules multivariées. Afin de mieux comprendre le gain en performance que donne cette méthode, nous étudions à l’aide d’expériences numériques l’effet de la force et la structure de dépendance sur les prévisions. Puisque les copules permettent d’isoler la structure de dépendance et les distributions marginales, nous étudions l’impact de différentes distributions marginales sur la performance des prévisions. Finalement, nous étudions aussi l’effet des erreurs d’estimation sur la performance des prévisions. Dans tous les cas, nous comparons la performance des prévisions en utilisant des prévisions provenant d’une série bivariée et d’une série univariée, ce qui permet d’illustrer l’avantage de cette méthode. Dans un intérêt plus pratique, nous présentons une application complète sur des données financières.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse s’intéresse à la modélisation magnétohydrodynamique des écoulements de fluides conducteurs d’électricité multi-échelles en mettant l’emphase sur deux applications particulières de la physique solaire: la modélisation des mécanismes des variations de l’irradiance via la simulation de la dynamo globale et la reconnexion magnétique. Les variations de l’irradiance sur les périodes des jours, des mois et du cycle solaire de 11 ans sont très bien expliquées par le passage des régions actives à la surface du Soleil. Cependant, l’origine ultime des variations se déroulant sur les périodes décadales et multi-décadales demeure un sujet controversé. En particulier, une certaine école de pensée affirme qu’une partie de ces variations à long-terme doit provenir d’une modulation de la structure thermodynamique globale de l’étoile, et que les seuls effets de surface sont incapables d’expliquer la totalité des fluctuations. Nous présentons une simulation globale de la convection solaire produisant un cycle magnétique similaire en plusieurs aspects à celui du Soleil, dans laquelle le flux thermique convectif varie en phase avec l’ ́energie magnétique. La corrélation positive entre le flux convectif et l’énergie magnétique supporte donc l’idée qu’une modulation de la structure thermodynamique puisse contribuer aux variations à long-terme de l’irradiance. Nous analysons cette simulation dans le but d’identifier le mécanisme physique responsable de la corrélation en question et pour prédire de potentiels effets observationnels résultant de la modulation structurelle. La reconnexion magnétique est au coeur du mécanisme de plusieurs phénomènes de la physique solaire dont les éruptions et les éjections de masse, et pourrait expliquer les températures extrêmes caractérisant la couronne. Une correction aux trajectoires du schéma semi-Lagrangien classique est présentée, qui est basée sur la solution à une équation aux dérivées partielles nonlinéaire du second ordre: l’équation de Monge-Ampère. Celle-ci prévient l’intersection des trajectoires et assure la stabilité numérique des simulations de reconnexion magnétique pour un cas de magnéto-fluide relaxant vers un état d’équilibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il est connu qu’une équation différentielle linéaire, x^(k+1)Y' = A(x)Y, au voisinage d’un point singulier irrégulier non-résonant est uniquement déterminée (à isomorphisme analytique près) par : (1) sa forme normale formelle, (2) sa collection de matrices de Stokes. La définition des matrices de Stokes fait appel à un ordre sur les parties réelles des valeurs propres du système, ordre qui peut être perturbé par une rotation en x. Dans ce mémoire, nous avons établi le caractère intrinsèque de cette relation : nous avons donc établi comment la nouvelle collection de matrices de Stokes obtenue après une rotation en x qui change l’ordre des parties réelles des valeurs propres dépend de la collection initiale. Pour ce faire, nous donnons un chapitre de préliminaires généraux sur la forme normale des équations différentielles ordinaires puis un chapitre sur le phénomène de Stokes pour les équations différentielles linéaires. Le troisième chapitre contient nos résultats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Un algorithme permettant de discrétiser les équations aux dérivées partielles (EDP) tout en préservant leurs symétries de Lie est élaboré. Ceci est rendu possible grâce à l'utilisation de dérivées partielles discrètes se transformant comme les dérivées partielles continues sous l'action de groupes de Lie locaux. Dans les applications, beaucoup d'EDP sont invariantes sous l'action de transformations ponctuelles de Lie de dimension infinie qui font partie de ce que l'on désigne comme des pseudo-groupes de Lie. Afin d'étendre la méthode de discrétisation préservant les symétries à ces équations, une discrétisation des pseudo-groupes est proposée. Cette discrétisation a pour effet de transformer les symétries ponctuelles en symétries généralisées dans l'espace discret. Des schémas invariants sont ensuite créés pour un certain nombre d'EDP. Dans tous les cas, des tests numériques montrent que les schémas invariants approximent mieux leur équivalent continu que les différences finies standard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetics of mercuric chloride catalysed solvolysis of l-butyl chloride, benzyl chloride. p-methylbenzyl chloride, l-phenylethyl chloride and triethylcarbinyl chloride have been studied in aq. DMSO, aq. acetonitrile and aq. ethanol. The kinetic data fit a second order rate equation in aq. DMSO. The calculated values of the second order rate coefficients increase in the case of aq. acetonitrile and aq. ethanol. The order in catalyst in 95%(v/v) aq. DMSO is less than unity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We deal with the numerical solution of heat conduction problems featuring steep gradients. In order to solve the associated partial differential equation a finite volume technique is used and unstructured grids are employed. A discrete maximum principle for triangulations of a Delaunay type is developed. To capture thin boundary layers incorporating steep gradients an anisotropic mesh adaptation technique is implemented. Computational tests are performed for an academic problem where the exact solution is known as well as for a real world problem of a computer simulation of the thermoregulation of premature infants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article surveys the classical orthogonal polynomial systems of the Hahn class, which are solutions of second-order differential, difference or q-difference equations. Orthogonal families satisfy three-term recurrence equations. Example applications of an algorithm to determine whether a three-term recurrence equation has solutions in the Hahn class - implemented in the computer algebra system Maple - are given. Modifications of these families, in particular associated orthogonal systems, satisfy fourth-order operator equations. A factorization of these equations leads to a solution basis.