908 resultados para Distributed Lag Non-linear Models
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Non-linear absorption is observed in Er3+-doped fluoroindate glass (in mol% 37InF2:20ZnF2:20SrF2:16BaF2:2GdF2: 2NaF:1GaF3:2ErF3) when the sample is irradiated with a CW laser emitting at 650 nm. An intensity dependence of the optical transmittance is detected. Saturation and sequential absorption of two photons are responsible for the decrease of 50% in the transmittance. The results are explained by simple models which are solved based on rate-equations for the populations of energy levels.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]
Resumo:
Numerous time series studies have provided strong evidence of an association between increased levels of ambient air pollution and increased levels of hospital admissions, typically at 0, 1, or 2 days after an air pollution episode. An important research aim is to extend existing statistical models so that a more detailed understanding of the time course of hospitalization after exposure to air pollution can be obtained. Information about this time course, combined with prior knowledge about biological mechanisms, could provide the basis for hypotheses concerning the mechanism by which air pollution causes disease. Previous studies have identified two important methodological questions: (1) How can we estimate the shape of the distributed lag between increased air pollution exposure and increased mortality or morbidity? and (2) How should we estimate the cumulative population health risk from short-term exposure to air pollution? Distributed lag models are appropriate tools for estimating air pollution health effects that may be spread over several days. However, estimation for distributed lag models in air pollution and health applications is hampered by the substantial noise in the data and the inherently weak signal that is the target of investigation. We introduce an hierarchical Bayesian distributed lag model that incorporates prior information about the time course of pollution effects and combines information across multiple locations. The model has a connection to penalized spline smoothing using a special type of penalty matrix. We apply the model to estimating the distributed lag between exposure to particulate matter air pollution and hospitalization for cardiovascular and respiratory disease using data from a large United States air pollution and hospitalization database of Medicare enrollees in 94 counties covering the years 1999-2002.
Resumo:
Background and Aims Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. Methods Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1–9 years per site from 1998 to 2011. Key Results The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. Conclusions The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.
Resumo:
In a strategic trade policy, it is assumed, in this paper, that a government changes disbursement or levy method so that the reaction function of home firm approaches infinitely close to that of foreign firm. In the framework of Bertrand-Nash equilibrium, Eaton and Grossman[1986] showed that export tax is preferable to export subsidy. In this paper, it is shown that export subsidy is preferable to export tax in some cases in the framework of Bertrand-Nash equilibrium, considering the uncertainty in demand. Historically, many economists mentioned non-linear subsidy or tax. However, optimum solution of it has not yet been shown. The optimum solution is shown in this paper.
Resumo:
The purpose of this work is to propose a structure for simulating power systems using behavioral models of nonlinear DC to DC converters implemented through a look-up table of gains. This structure is specially designed for converters whose output impedance depends on the load current level, e.g. quasi-resonant converters. The proposed model is a generic one whose parameters can be obtained by direct measuring the transient response at different operating points. It also includes optional functionalities for modeling converters with current limitation and current sharing in paralleling characteristics. The pusposed structured also allows including aditional characteristics of the DC to DC converter as the efficency as a function of the input voltage and the output current or overvoltage and undervoltage protections. In addition, this proposed model is valid for overdamped and underdamped situations.
Resumo:
Swarm colonies reproduce social habits. Working together in a group to reach a predefined goal is a social behaviour occurring in nature. Linear optimization problems have been approached by different techniques based on natural models. In particular, Particles Swarm optimization is a meta-heuristic search technique that has proven to be effective when dealing with complex optimization problems. This paper presents and develops a new method based on different penalties strategies to solve complex problems. It focuses on the training process of the neural networks, the constraints and the election of the parameters to ensure successful results and to avoid the most common obstacles when searching optimal solutions.
Resumo:
El estudio sísmico en los últimos 50 años y el análisis del comportamiento dinámico del suelo revelan que el comportamiento del suelo es altamente no lineal e histéretico incluso para pequeñas deformaciones. El comportamiento no lineal del suelo durante un evento sísmico tiene un papel predominante en el análisis de la respuesta de sitio. Los análisis unidimensionales de la respuesta sísmica del suelo son a menudo realizados utilizando procedimientos lineales equivalentes, que requieren generalmente pocos parámetros conocidos. Los análisis de respuesta de sitio no lineal tienen el potencial para simular con mayor precisión el comportamiento del suelo, pero su aplicación en la práctica se ha visto limitada debido a la selección de parámetros poco documentadas y poco claras, así como una inadecuada documentación de los beneficios del modelado no lineal en relación al modelado lineal equivalente. En el análisis del suelo, el comportamiento del suelo es aproximado como un sólido Kelvin-Voigt con un módulo de corte elástico y amortiguamiento viscoso. En el análisis lineal y no lineal del suelo se están considerando geometrías y modelos reológicos más complejos. El primero está siendo dirigido por considerar parametrizaciones más ricas del comportamiento linealizado y el segundo mediante el uso de multi-modo de los elementos de resorte-amortiguador con un eventual amortiguador fraccional. El uso del cálculo fraccional está motivado en gran parte por el hecho de que se requieren menos parámetros para lograr la aproximación exacta a los datos experimentales. Basándose en el modelo de Kelvin-Voigt, la viscoelasticidad es revisada desde su formulación más estándar a algunas descripciones más avanzada que implica la amortiguación dependiente de la frecuencia (o viscosidad), analizando los efectos de considerar derivados fraccionarios para representar esas contribuciones viscosas. Vamos a demostrar que tal elección se traduce en modelos más ricos que pueden adaptarse a diferentes limitaciones relacionadas con la potencia disipada, amplitud de la respuesta y el ángulo de fase. Por otra parte, el uso de derivados fraccionarios permite acomodar en paralelo, dentro de un análogo de Kelvin-Voigt generalizado, muchos amortiguadores que contribuyen a aumentar la flexibilidad del modelado para la descripción de los resultados experimentales. Obviamente estos modelos ricos implican muchos parámetros, los asociados con el comportamiento y los relacionados con los derivados fraccionarios. El análisis paramétrico de estos modelos requiere técnicas numéricas eficientemente capaces de simular comportamientos complejos. El método de la Descomposición Propia Generalizada (PGD) es el candidato perfecto para la construcción de este tipo de soluciones paramétricas. Podemos calcular off-line la solución paramétrica para el depósito de suelo, para todos los parámetros del modelo, tan pronto como tales soluciones paramétricas están disponibles, el problema puede ser resuelto en tiempo real, porque no se necesita ningún nuevo cálculo, el solucionador sólo necesita particularizar on-line la solución paramétrica calculada off-line, que aliviará significativamente el procedimiento de solución. En el marco de la PGD, parámetros de los materiales y los diferentes poderes de derivación podrían introducirse como extra-coordenadas en el procedimiento de solución. El cálculo fraccional y el nuevo método de reducción modelo llamado Descomposición Propia Generalizada han sido aplicado en esta tesis tanto al análisis lineal como al análisis no lineal de la respuesta del suelo utilizando un método lineal equivalente. ABSTRACT Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis. One-dimensional seismic ground response analysis are often performed using equivalent-linear procedures, which require few, generally well-known parameters. Nonlinear analyses have the potential to more accurately simulate soil behavior, but their implementation in practice has been limited because of poorly documented and unclear parameter selection, as well as inadequate documentation of the benefits of nonlinear modeling relative to equivalent linear modeling. In soil analysis, soil behaviour is approximated as a Kelvin-Voigt solid with a elastic shear modulus and viscous damping. In linear and nonlinear analysis more complex geometries and more complex rheological models are being considered. The first is being addressed by considering richer parametrizations of the linearized behavior and the second by using multi-mode spring-dashpot elements with eventual fractional damping. The use of fractional calculus is motivated in large part by the fact that fewer parameters are required to achieve accurate approximation of experimental data. Based in Kelvin-Voigt model the viscoelastodynamics is revisited from its most standard formulation to some more advanced description involving frequency-dependent damping (or viscosity), analyzing the effects of considering fractional derivatives for representing such viscous contributions. We will prove that such a choice results in richer models that can accommodate different constraints related to the dissipated power, response amplitude and phase angle. Moreover, the use of fractional derivatives allows to accommodate in parallel, within a generalized Kelvin-Voigt analog, many dashpots that contribute to increase the modeling flexibility for describing experimental findings. Obviously these rich models involve many parameters, the ones associated with the behavior and the ones related to the fractional derivatives. The parametric analysis of all these models require efficient numerical techniques able to simulate complex behaviors. The Proper Generalized Decomposition (PGD) is the perfect candidate for producing such kind of parametric solutions. We can compute off-line the parametric solution for the soil deposit, for all parameter of the model, as soon as such parametric solutions are available, the problem can be solved in real time because no new calculation is needed, the solver only needs particularize on-line the parametric solution calculated off-line, which will alleviate significantly the solution procedure. Within the PGD framework material parameters and the different derivation powers could be introduced as extra-coordinates in the solution procedure. Fractional calculus and the new model reduction method called Proper Generalized Decomposition has been applied in this thesis to the linear analysis and nonlinear soil response analysis using a equivalent linear method.
Resumo:
It has been argued that a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex data sets, and therefore a hierarchical visualization system is desirable. In this paper we extend an existing locally linear hierarchical visualization system PhiVis ¸iteBishop98a in several directions: bf(1) We allow for em non-linear projection manifolds. The basic building block is the Generative Topographic Mapping. bf(2) We introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree. General training equations are derived, regardless of the position of the model in the tree. bf(3) Using tools from differential geometry we derive expressions for local directional curvatures of the projection manifold. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. It enables the user to interactively highlight those data in the parent visualization plot which are captured by a child model. We also incorporate into our system a hierarchical, locally selective representation of magnification factors and directional curvatures of the projection manifolds. Such information is important for further refinement of the hierarchical visualization plot, as well as for controlling the amount of regularization imposed on the local models. We demonstrate the principle of the approach on a toy data set and apply our system to two more complex 12- and 19-dimensional data sets.
Resumo:
It has been argued that a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex data sets, and therefore a hierarchical visualization system is desirable. In this paper we extend an existing locally linear hierarchical visualization system PhiVis ¸iteBishop98a in several directions: bf(1) We allow for em non-linear projection manifolds. The basic building block is the Generative Topographic Mapping (GTM). bf(2) We introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree. General training equations are derived, regardless of the position of the model in the tree. bf(3) Using tools from differential geometry we derive expressions for local directional curvatures of the projection manifold. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. It enables the user to interactively highlight those data in the ancestor visualization plots which are captured by a child model. We also incorporate into our system a hierarchical, locally selective representation of magnification factors and directional curvatures of the projection manifolds. Such information is important for further refinement of the hierarchical visualization plot, as well as for controlling the amount of regularization imposed on the local models. We demonstrate the principle of the approach on a toy data set and apply our system to two more complex 12- and 18-dimensional data sets.
Resumo:
Hierarchical visualization systems are desirable because a single two-dimensional visualization plot may not be sufficient to capture all of the interesting aspects of complex high-dimensional data sets. We extend an existing locally linear hierarchical visualization system PhiVis [1] in several directions: bf(1) we allow for em non-linear projection manifolds (the basic building block is the Generative Topographic Mapping -- GTM), bf(2) we introduce a general formulation of hierarchical probabilistic models consisting of local probabilistic models organized in a hierarchical tree, bf(3) we describe folding patterns of low-dimensional projection manifold in high-dimensional data space by computing and visualizing the manifold's local directional curvatures. Quantities such as magnification factors [3] and directional curvatures are helpful for understanding the layout of the nonlinear projection manifold in the data space and for further refinement of the hierarchical visualization plot. Like PhiVis, our system is statistically principled and is built interactively in a top-down fashion using the EM algorithm. We demonstrate the visualization system principle of the approach on a complex 12-dimensional data set and mention possible applications in the pharmaceutical industry.
Resumo:
Linear models reach their limitations in applications with nonlinearities in the data. In this paper new empirical evidence is provided on the relative Euro inflation forecasting performance of linear and non-linear models. The well established and widely used univariate ARIMA and multivariate VAR models are used as linear forecasting models whereas neural networks (NN) are used as non-linear forecasting models. It is endeavoured to keep the level of subjectivity in the NN building process to a minimum in an attempt to exploit the full potentials of the NN. It is also investigated whether the historically poor performance of the theoretically superior measure of the monetary services flow, Divisia, relative to the traditional Simple Sum measure could be attributed to a certain extent to the evaluation of these indices within a linear framework. Results obtained suggest that non-linear models provide better within-sample and out-of-sample forecasts and linear models are simply a subset of them. The Divisia index also outperforms the Simple Sum index when evaluated in a non-linear framework. © 2005 Taylor & Francis Group Ltd.