797 resultados para Discrete-time systems
Resumo:
Modern distributed control systems comprise of a set of processors which are interconnected using a suitable communication network. For use in real-time control environments, such systems must be deterministic and generate specified responses within critical timing constraints. Also, they should be sufficiently robust to survive predictable events such as communication or processor faults. This thesis considers the problem of coordinating and synchronizing a distributed real-time control system under normal and abnormal conditions. Distributed control systems need to periodically coordinate the actions of several autonomous sites. Often the type of coordination required is the all or nothing property of an atomic action. Atomic commit protocols have been used to achieve this atomicity in distributed database systems which are not subject to deadlines. This thesis addresses the problem of applying time constraints to atomic commit protocols so that decisions can be made within a deadline. A modified protocol is proposed which is suitable for real-time applications. The thesis also addresses the problem of ensuring that atomicity is provided even if processor or communication failures occur. Previous work has considered the design of atomic commit protocols for use in non time critical distributed database systems. However, in a distributed real-time control system a fault must not allow stringent timing constraints to be violated. This thesis proposes commit protocols using synchronous communications which can be made resilient to a single processor or communication failure and still satisfy deadlines. Previous formal models used to design commit protocols have had adequate state coverability but have omitted timing properties. They also assumed that sites communicated asynchronously and omitted the communications from the model. Timed Petri nets are used in this thesis to specify and design the proposed protocols which are analysed for consistency and timeliness. Also the communication system is mcxielled within the Petri net specifications so that communication failures can be included in the analysis. Analysis of the Timed Petri net and the associated reachability tree is used to show the proposed protocols always terminate consistently and satisfy timing constraints. Finally the applications of this work are described. Two different types of applications are considered, real-time databases and real-time control systems. It is shown that it may be advantageous to use synchronous communications in distributed database systems, especially if predictable response times are required. Emphasis is given to the application of the developed commit protocols to real-time control systems. Using the same analysis techniques as those used for the design of the protocols it can be shown that the overall system performs as expected both functionally and temporally.
Resumo:
Hard real-time systems are a class of computer control systems that must react to demands of their environment by providing `correct' and timely responses. Since these systems are increasingly being used in systems with safety implications, it is crucial that they are designed and developed to operate in a correct manner. This thesis is concerned with developing formal techniques that allow the specification, verification and design of hard real-time systems. Formal techniques for hard real-time systems must be capable of capturing the system's functional and performance requirements, and previous work has proposed a number of techniques which range from the mathematically intensive to those with some mathematical content. This thesis develops formal techniques that contain both an informal and a formal component because it is considered that the informality provides ease of understanding and the formality allows precise specification and verification. Specifically, the combination of Petri nets and temporal logic is considered for the specification and verification of hard real-time systems. Approaches that combine Petri nets and temporal logic by allowing a consistent translation between each formalism are examined. Previously, such techniques have been applied to the formal analysis of concurrent systems. This thesis adapts these techniques for use in the modelling, design and formal analysis of hard real-time systems. The techniques are applied to the problem of specifying a controller for a high-speed manufacturing system. It is shown that they can be used to prove liveness and safety properties, including qualitative aspects of system performance. The problem of verifying quantitative real-time properties is addressed by developing a further technique which combines the formalisms of timed Petri nets and real-time temporal logic. A unifying feature of these techniques is the common temporal description of the Petri net. A common problem with Petri net based techniques is the complexity problems associated with generating the reachability graph. This thesis addresses this problem by using concurrency sets to generate a partial reachability graph pertaining to a particular state. These sets also allows each state to be checked for the presence of inconsistencies and hazards. The problem of designing a controller for the high-speed manufacturing system is also considered. The approach adopted mvolves the use of a model-based controller: This type of controller uses the Petri net models developed, thus preservIng the properties already proven of the controller. It. also contains a model of the physical system which is synchronised to the real application to provide timely responses. The various way of forming the synchronization between these processes is considered and the resulting nets are analysed using concurrency sets.
Resumo:
When making predictions with complex simulators it can be important to quantify the various sources of uncertainty. Errors in the structural specification of the simulator, for example due to missing processes or incorrect mathematical specification, can be a major source of uncertainty, but are often ignored. We introduce a methodology for inferring the discrepancy between the simulator and the system in discrete-time dynamical simulators. We assume a structural form for the discrepancy function, and show how to infer the maximum-likelihood parameter estimates using a particle filter embedded within a Monte Carlo expectation maximization (MCEM) algorithm. We illustrate the method on a conceptual rainfall-runoff simulator (logSPM) used to model the Abercrombie catchment in Australia. We assess the simulator and discrepancy model on the basis of their predictive performance using proper scoring rules. This article has supplementary material online. © 2011 International Biometric Society.
Resumo:
A probabilistic indirect adaptive controller is proposed for the general nonlinear multivariate class of discrete time system. The proposed probabilistic framework incorporates input–dependent noise prediction parameters in the derivation of the optimal control law. Moreover, because noise can be nonstationary in practice, the proposed adaptive control algorithm provides an elegant method for estimating and tracking the noise. For illustration purposes, the developed method is applied to the affine class of nonlinear multivariate discrete time systems and the desired result is obtained: the optimal control law is determined by solving a cubic equation and the distribution of the tracking error is shown to be Gaussian with zero mean. The efficiency of the proposed scheme is demonstrated numerically through the simulation of an affine nonlinear system.
Resumo:
We study a class of models used with success in the modelling of climatological sequences. These models are based on the notion of renewal. At first, we examine the probabilistic aspects of these models to afterwards study the estimation of their parameters and their asymptotical properties, in particular the consistence and the normality. We will discuss for applications, two particular classes of alternating renewal processes at discrete time. The first class is defined by laws of sojourn time that are translated negative binomial laws and the second class, suggested by Green is deduced from alternating renewal process in continuous time with sojourn time laws which are exponential laws with parameters α^0 and α^1 respectively.
Resumo:
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Kárnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained.
Resumo:
Йордан Йорданов, Андрей Василев - В работата се изследват методи за решаването на задачи на оптималното управление в дискретно време с безкраен хоризонт и явни управления. Дадена е обосновка на една процедура за решаване на такива задачи, базирана на множители на Лагранж, коята често се употребява в икономическата литература. Извеждени са необходимите условия за оптималност на базата на уравнения на Белман и са приведени достатъчни условия за оптималност при допускания, които често се използват в икономиката.
Resumo:
Real-time systems are usually modelled with timed automata and real-time requirements relating to the state durations of the system are often specifiable using Linear Duration Invariants, which is a decidable subclass of Duration Calculus formulas. Various algorithms have been developed to check timed automata or real-time automata for linear duration invariants, but each needs complicated preprocessing and exponential calculation. To the best of our knowledge, these algorithms have not been implemented. In this paper, we present an approximate model checking technique based on a genetic algorithm to check real-time automata for linear durration invariants in reasonable times. Genetic algorithm is a good optimization method when a problem needs massive computation and it works particularly well in our case because the fitness function which is derived from the linear duration invariant is linear. ACM Computing Classification System (1998): D.2.4, C.3.
Resumo:
In this paper, we propose a new edge-based matching kernel for graphs by using discrete-time quantum walks. To this end, we commence by transforming a graph into a directed line graph. The reasons of using the line graph structure are twofold. First, for a graph, its directed line graph is a dual representation and each vertex of the line graph represents a corresponding edge in the original graph. Second, we show that the discrete-time quantum walk can be seen as a walk on the line graph and the state space of the walk is the vertex set of the line graph, i.e., the state space of the walk is the edges of the original graph. As a result, the directed line graph provides an elegant way of developing new edge-based matching kernel based on discrete-time quantum walks. For a pair of graphs, we compute the h-layer depth-based representation for each vertex of their directed line graphs by computing entropic signatures (computed from discrete-time quantum walks on the line graphs) on the family of K-layer expansion subgraphs rooted at the vertex, i.e., we compute the depth-based representations for edges of the original graphs through their directed line graphs. Based on the new representations, we define an edge-based matching method for the pair of graphs by aligning the h-layer depth-based representations computed through the directed line graphs. The new edge-based matching kernel is thus computed by counting the number of matched vertices identified by the matching method on the directed line graphs. Experiments on standard graph datasets demonstrate the effectiveness of our new kernel.
Resumo:
In this paper, we develop a new graph kernel by using the quantum Jensen-Shannon divergence and the discrete-time quantum walk. To this end, we commence by performing a discrete-time quantum walk to compute a density matrix over each graph being compared. For a pair of graphs, we compare the mixed quantum states represented by their density matrices using the quantum Jensen-Shannon divergence. With the density matrices for a pair of graphs to hand, the quantum graph kernel between the pair of graphs is defined by exponentiating the negative quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets, and demonstrate the effectiveness of the new kernel.
Resumo:
2000 Mathematics Subject Classification: 60J80
Resumo:
2010 Mathematics Subject Classification: 60J80.
Resumo:
In this study, discrete time one-factor models of the term structure of interest rates and their application to the pricing of interest rate contingent claims are examined theoretically and empirically. The first chapter provides a discussion of the issues involved in the pricing of interest rate contingent claims and a description of the Ho and Lee (1986), Maloney and Byrne (1989), and Black, Derman, and Toy (1990) discrete time models. In the second chapter, a general discrete time model of the term structure from which the Ho and Lee, Maloney and Byrne, and Black, Derman, and Toy models can all be obtained is presented. The general model also provides for the specification of an additional model, the ExtendedMB model. The third chapter illustrates the application of the discrete time models to the pricing of a variety of interest rate contingent claims. In the final chapter, the performance of the Ho and Lee, Black, Derman, and Toy, and ExtendedMB models in the pricing of Eurodollar futures options is investigated empirically. The results indicate that the Black, Derman, and Toy and ExtendedMB models outperform the Ho and Lee model. Little difference in the performance of the Black, Derman, and Toy and ExtendedMB models is detected. ^