987 resultados para Differential display
Resumo:
In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.
Resumo:
Aijt-Sahalia (2002) introduced a method to estimate transitional probability densities of di®usion processes by means of Hermite expansions with coe±cients determined by means of Taylor series. This note describes a numerical procedure to ¯nd these coe±cients based on the calculation of moments. One advantage of this procedure is that it can be used e®ectively when the mathematical operations required to ¯nd closed-form expressions for these coe±cients are otherwise infeasible.
Resumo:
In this paper we propose an efficient authentication and integrity scheme to support DGPS corrections using the RTCM protocol, such that the identified vulnerabilities in DGPS are mitigated. The proposed scheme is based on the TESLA broadcast protocol with modifications that make it suitable for the bandwidth and processor constrained environment of marine DGPS.
Resumo:
Most corporate entrepreneurship studies have focused on either innovation, venturing or strategic renewal making comparison between the antecedents of all three aspects of corporate entrepreneurship difficult. Moreover, studies on corporate entrepreneurship hardly address organizational antecedents, while simultaneously managing and organizing CE and mainstream activities has been seen as a major challenge for incumbent firms. Our findings show that organizational ambidexterity has strong and differential effects on venturing, innovation and renewal. We find, for example, that innovation is affected by horizontal integration, while strategic renewal is significantly influenced by integration on top management team level.
Resumo:
The solution of linear ordinary differential equations (ODEs) is commonly taught in first year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognising what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to tables of solutions, is an important skill for students to carry with them to advanced studies in mathematics. In this study we describe a teaching and learning strategy that replaces the traditional algorithmic, transmission presentation style for solving ODEs with a constructive, discovery based approach where students employ their existing skills as a framework for constructing the solutions of first and second order linear ODEs. We elaborate on how the strategy was implemented and discuss the resulting impact on a first year undergraduate class. Finally we propose further improvements to the strategy as well as suggesting other topics which could be taught in a similar manner.
Resumo:
This study seeks to further delineate how organizational antecedents differentially influence the three components of corporate entrepreneurship: innovation, venturing or strategic renewal. We argue that structural differentiation may help organizations to maintain multiple and often conflicting demands of entrepreneurial and mainstream activities. Taking a social capital perspective, our study further examines two contingencies in the form of informal integration mechanisms (i.e. connectedness and TMT social integration). Our findings show structural differentiation has a positive effect on all three components of corporate entrepreneurship, yet the effect is moderated by integration mechanisms. Interunit connectedness has a positive moderation effect regarding innovation and venturing, and TMT social integration has a negative moderation effect regarding strategic renewal. This reveals that innovation is influenced by informal integration mechanisms on the organizational level, strategic renewal on top management team level, while venturing is influenced by integration mechanisms on both levels.
Resumo:
This study utilises a mexed design laboratory experiment to test the impact of differential reporting on one group of external financial report users-lenders. The results indicate that the judgments of bank loan officers' assessment of the ability of a borrower to repay, are not significantly affected by differential reporting (in this case, presentation on non-GAAP financial reports compared to GAAP financial reports). However, bankers request additional information from borrowers when non-GAAP financial reports are presented.
Resumo:
Glass transition temperature of spaghetti sample was measured by thermal and rheological methods as a function of water content.
Resumo:
A novel voltammetric method for simultaneous determination of the glucocorticoid residues prednisone, prednisolone, and dexamethasone was developed. All three compounds were reduced at a mercury electrode in a Britton-Robinson buffer (pH 3.78), and well-defined voltammetric waves were observed. However, the voltammograms of these three compounds overlapped seriously and showed nonlinear character, and thus, it was difficult to analyze the compounds individually in their mixtures. In this work, two chemometrics methods, principal component regression (PCR) and partial least squares (PLS), were applied to resolve the overlapped voltammograms, and the calibration models were established for simultaneous determination of these compounds. Under the optimum experimental conditions, the limits of detection (LOD) were 5.6, 8.3, and 16.8 µg l-1 for prednisone, prednisolone, and dexamethasone, respectively. The proposed method was also applied for the determination of these glucocorticoid residues in the rabbit plasma and human urine samples with satisfactory results.
Resumo:
A simple and sensitive spectrophotometric method for the simultaneous determination of acesulfame-K, sodium cyclamate and saccharin sodium sweeteners in foodstuff samples has been researched and developed. This analytical method relies on the different kinetic rates of the analytes in their oxidative reaction with KMnO4 to produce the green manganate product in an alkaline solution. As the kinetic rates of acesulfame-K, sodium cyclamate and saccharin sodium were similar and their kinetic data seriously overlapped, chemometrics methods, such as partial least squares (PLS), principal component regression (PCR) and classical least squares (CLS), were applied to resolve the kinetic data. The results showed that the PLS prediction model performed somewhat better. The proposed method was then applied for the determination of the three sweeteners in foodstuff samples, and the results compared well with those obtained by the reference HPLC method.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.