930 resultados para Dicumyl Peroxide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acid-stable soybean-peroxidase biosensor was devel oped by immobilizing the enzyme in a sol-gel thin film. Methylene blue was used as a mediator because of its high electron-transfer efficiency. The sol-gel thin film and enzyme membrane were characterized by FT-IR, and the effects of pH, operating potential, and temperature were explored for optimum analytical performance by using the amperometric method. The H2O2 sensor exhibited a fast response (5 s), high sensitivity (27.5 mu A/mM), as well as good thermostability and long-term stability. In addition, the performance of the biosensor was investigated using flow-injection analysis (FIA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel functionalized inorganic-organic hybrid material with cation exchange property was prepared by sol-gel method. The H2O2 biosensor was fabricated by simply dipping the horseradish peroxidase-containing functionalized membrane modified electrode into Meldola's blue (MDB) solution. MDB was adsorbed and firmly immobilized within the membrane. The electrochemical behavior of MDB incorporated in the membrane was more reversible compared with that of the solution species and suitable as mediator for the horseradish peroxidase. The response time was less than 25 s. Linear range is up to 0.6 mM (COH. coeff. 0.9998) with detection Limit of 9 x 10(-7) M. High sensitivity of 75 nA mu M cm(-2) was obtained due to high MDB-loading. The biosensor exhibited a good stability. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(A) novel chemiluminescence (CL) system was evaluated for the determination of hydrogen peroxide, glucose and ascorbic acid based on hydrogen peroxide, which has a catalytic-cooxidative effect on the oxidation of luminol by KIO4. Hydrogen peroxide can be directly determined by luminol-KIO4 -H2O2 CL system. The detection limit was 3.0 x 10(-8) mol l(-1) and the calibration graph was linear over the range of 2.0 x 10(-7)-6.0 x 10(-4) mol l(-1). The relative standard deviation of H2O2 was 1.1% for 2.0 x 10(-6) mol l(-1) (N = 11). Glucose was indirectly determined through measuring the H2O2 generated by the oxidation of glucose in the presence of glucose oxidase at pH 7.6. The present method provides a source for H2O2, which, in turn, coupled with the luminol-KIO4-H2O2 CL reaction system. The CL was linearly correlated with glucose concentration of 0.6-110 mu g ml(-1). The relative standard deviation was 2.1% for 10 mu g ml(-1) (N = 11). Detection limit of glucose was 0.08 mu g ml(-1). Ascorbic acid was also indirectly determined by the suppression of luminol-KIO4-H2O2 CL system. The calibration curve was linear over the range of 1.0 x 10(-7)-1.0 x 10(-5) mol l(-1) of ascorbic acid. The relative standard deviation was 1.0% for 8.0 x 10(-7) mol l(-1) (N = 11). Detection limit of ascorbic acid was 6.0 x 10(=8) mol l(-1). These proposed methods have been applied to determine glucose, ascorbic acid in tablets and injection. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytochrome c and hydrogen peroxide-dependent oxidation of m-aminophenol was investigated by electrochemistry and spectrophotometry. The results indicated that the hydroxylated species of m-aminophenol have at least two conjugated substituted groups on the ring system (most possibly, its oxidized form 2-hydroxy-4-iminoquinone), and that the degradation of cytochrome c by hydrogen peroxide can also be prevented in the presence of m-aminophenol. The hydroxyl radical scavengers, mannitol and sodium benzoate, almost completely eliminate the hydroxylation of m-aminophenol. But oxo-heme species scavenger, uric acid, does not inhibit the hydroxylation. Combining the results of mass spectrum, nuclear magnetic resonance and element analysis with that of spectrophotometry, electrochemistry and chemical scavengers, it is suggested that cytochrome c may act as a peroxidase, which facilitates the hydroxylation and subsequent dimerization of m-aminophenol. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite membrane modified electrodes were prepared by electrochemical deposition of platinum particles in a poly(o-phenylenediamine) (PPD) him coated on glassy carbon (GC) electrodes. The modified electrodes showed high catalytic activity towards the reduction of oxygen and hydrogen peroxide. A four-electron transfer process predominated the reduction process. The pH dependence and the stability of the electrodes were also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of hydrogen peroxide with cytochrome c makes them coupled to lead to the hydroxylation of 4-nitrophenol. In situ electrochemical probe was used to detect the hydroxylation of 4-nitrophenol, which can avoid the tedious extraction procedure, the loss of the active species and the interference of some colored substances in the detection of 4-nitrocatechol by spectroscopic method. The hydroxyl radical scavengers mannitol and sodium benzoate did not eliminate hydroxylation, but the inhibitory effect of uric acid on the hydroxylation lead to the formation of the ferryl species of the protein during the reaction. These studies suggest that the electrochemical probe might efficiently detect the trace 4-nitrocatechol from the onset of the hydroxylation reaction and thus provides a more sensitive tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrotalcite-like compounds containing carbonate ion as the interlayer anion were prepared by coprecipitation under low supersaturation condition by mixing an aqueous solution of metal nitrates with an aqueous solutions of NaOH and Na2CO3, at room temperature, maintaining pH = 8-10 with vigorous stirring, Following the mixing, the resulting heavy slurry was aged at 353 K for 18 h with vigorous stirring, The precipitate was then filtered, washed several times with hot distilled water and dried in air at 353 K overnight, In this way, CuMI AlCO3-HTLcs and M-I AlCO3-HTLcs were synthesized and characterized by means of XRD and IR, The catalysis of the above mentioned HTLcs were investigated in the phenol hydroxylation with H2O2. The results indicated that all of the copper-containing HTLcs had a higher catalytic activity in the reaction, However, those catalysts that did not contain copper had no catalytic activity in this reaction, This means that copper was the active center in the phenol hydroxylation. Meanwhile, the mechanism was also proposed, which could be used to explain the main reason for higher activity for CuCuAlCO3-HTLcs in the phenol hydroxylation and the effect of Mg2+, Zn2+, Co2+, Ni2+ on activity of CuMI AlCO3-HTLcs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative polymerization of aniline in the presence of H2O2/Fe2+/HCl was carried out, and polyaniline obtained showed similar molecular structure compared to that prepared in (NH4)(2)S2O8 system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzoyl peroxide gave rise to benzoic acid (at m/z 122) in its electron impact mass spectrum, and its perdeuterated counterpart produced perdeuterobenzoic acid, C6D5CO2D, at m/z 128 under the same conditions, An intramolecular hydrogen abstraction is proposed for the formation of benzoic acid from the peroxide in thermolysis. As a result of this reaction, benzyne would be generated simultaneously. Anthracene was employed to trap any of the reactive intermediate benzyne. Collision-induced dissociation of the ion of m/z 254 from the mixture of benzoyl peroxide and anthracene indicated that triptycene was obtained by the trapping reaction, therefore confirming that benzyne is generated from benzoyl peroxide in thermolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An activated intermediate formed from H2O2 and cytochrome C is identified by direct electrochemical measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduction of hydrogen peroxide at a glassy carbon (GC) electrode modified with sigma-bonded pyrrole iron(III) octaethylporphyrin complex, (OEP)Fe(Pyr), was studied by cyclic voltammetry and a rotating disk electrode. In 0.1N NaOH solution, it is shown that such an (OEP)Fe(Pyr)/GC electrode has a significant catalytic activity towards hydrogen peroxide reduction (E(D) = -0.80 V, k = 0.066 cm s(-1)); however, the electrode stability is low. The deactivation is observed when the reaction charge (Q) is passing through the (OEP)Fe(Pyr)/GC disk electrode. A linear rotation scan method is applied to study the kinetic process by determining the disk electrochemical response (i(D)) to rotation rate (omega) at a definite disk potential (E(D)). Considering that the number of adsorbed electroreduced catalyst molecules (Red) varies according to the disk potential, a factor theta(= Gamma(Red)/(Gamma(Red) + Gamma(Ox))) is introduced to describe the electrode surface area fraction for electroreduced species. The obtained Koutecky-Levich equation is applicable whatever the potential is.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mediatorless H2O2 sensor based on coelectropolymerization of horse radish peroxidase (HRP) and o-phenylenediamine (o-PD) is described. The electrode responds to H2O2 in a few seconds and gives a current density of 73.3 nA 1 mu mol(-1) cm(-2) at -100 mV

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A radical aromatic substitution resulting in biphenylcarboxylic acid is inferred for the decomposition of benzoyl peroxide from the chemical ionization and collision-induced dissociation mass spectra. The thermolysis of benzoyl peroxide gives rise to a benzoyloxy radical, which undergoes rapid decarboxylation and hydrogen abstraction leading to phenyl radical and benzoic acid, respectively. Attack of the resulting phenyl radical on the benzoic acid results in bipbenylcarboxylic acid. On the other hand, the phenyl radical abstracts a hydrogen atom to yield benzene, which is then subjected to the attack of a benzoyloxy radical, affording phenyl benzoate. This substitution reaction rather than the recombination of benzoyloxy and phenyl radicals is found to be responsible for the formation of phenyl benzoate under the present conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrochemical technique for the real-time detection of hydrogen peroxide (H2O2) was employed to describe respiratory burst activity (RBA) of phagocytes in plasma which can be used to evaluate the ability of immune system and disease resistance. The method is based upon the electric current changes, by redox reaction on platinum electrode of extracellular hydrogen peroxide (H2O2) released from phagocytes stimulated by the zymosan at 680 mV direct current (d.c.). Compared with the control, activation of respiratory burst by zymosan particles results in a high amperometric response, and a current peak was obtained during the whole monitoring process. The peak current was proved by addition Of Cu2+ and other controls, to be the result of intense release of H2O2 from phagocytes. The peak area was calculated and used to evaluate the quantity of effective H2O2, which represents the quantity of H2O2 beyond the clearance of related enzymes in plasma. According to Faraday's law, the phagocytes' ability of prawns to generate effective H2O2 was evaluated from 1.253 x 10(-14) mol/cell to 6.146 x 10(-14) mol/cell, and carp from 1.689 x 10(-15) Mol/Cell to 7.873 x 10(-1)5 mol/cell. This method is an acute and quick detection of extracellular effective H2O2 in plasma and reflects the capacity of phagocytes under natural conditions, which could be applied for selecting species and parents with high immunity for breeding in aquaculture. (c) 2007 Elsevier Ltd. All rights reserved.