835 resultados para Design Support
Resumo:
Health care providers face the problem of trying to make decisions with inadequate information and also with an overload of (often contradictory) information. Physicians often choose treatment long before they know which disease is present. Indeed, uncertainty is intrinsic to the practice of medicine. Decision analysis can help physicians structure and work through a medical decision problem, and can provide reassurance that decisions are rational and consistent with the beliefs and preferences of other physicians and patients. ^ The primary purpose of this research project is to develop the theory, methods, techniques and tools necessary for designing and implementing a system to support solving medical decision problems. A case study involving “abdominal pain” serves as a prototype for implementing the system. The research, however, focuses on a generic class of problems and aims at covering theoretical as well as practical aspects of the system developed. ^ The main contributions of this research are: (1) bridging the gap between the statistical approach and the knowledge-based (expert) approach to medical decision making; (2) linking a collection of methods, techniques and tools together to allow for the design of a medical decision support system, based on a framework that involves the Analytic Network Process (ANP), the generalization of the Analytic Hierarchy Process (AHP) to dependence and feedback, for problems involving diagnosis and treatment; (3) enhancing the representation and manipulation of uncertainty in the ANP framework by incorporating group consensus weights; and (4) developing a computer program to assist in the implementation of the system. ^
Resumo:
A reliability approach to tunnel support design is presented in this paper. The aim of the work is the incorporation of classical Level II techniques to the current design method based on the study of the ground-support interaction diagram.
Resumo:
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications?it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ?Activity Monitor? has been designed and implemented: a personal health-persuasive application that provides feedback on the user?s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user?s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.
Resumo:
Offshore wind industry has exponentially grown in the last years. Despite this growth, there are still many uncertainties in this field. This paper analyzes some current uncertainties in the offshore wind market, with the aim of going one step further in the development of this sector. To do this, some already identified uncertainties compromising offshore wind farm structural design have been identified and described in the paper. Examples of these identified uncertainties are the design of the transition piece and the difficulties for the soil properties characterization. Furthermore, this paper deals with other uncertainties not identified yet due to the limited experience in the sector. To do that, current and most used offshore wind standards and recommendations related to the design of foundation and support structures (IEC 61400-1, 2005; IEC 61400-3, 2009; DNV-OS-J101, Design of Offshore Wind Turbine, 2013 and Rules and Guidelines Germanischer Lloyd, WindEnergie, 2005) have been analyzed. These new identified uncertainties are related to the lifetime and return period, loads combination, scour phenomenon and its protection, Morison e Froude Krilov and diffraction regimes, wave theory, different scale and liquefaction. In fact, there are a lot of improvements to make in this field. Some of them are mentioned in this paper, but the future experience in the matter will make it possible to detect more issues to be solved and improved.
Resumo:
Gestational Diabetes (GD) has increased over the last 20 years, affecting up to 15% of pregnant women worldwide. The complications associated can be reduced with the appropriate glycemic control during the pregnancy.
Resumo:
Hoy en día, por primera vez en la historia, la mayor parte de la población podrá vivir hasta los sesenta años y más (United Nations, 2015). Sin embargo, todavía existe poca evidencia que demuestre que las personas mayores, estén viviendo con mejor salud que sus padres, a la misma edad, ya que la mayoría de los problemas de salud en edades avanzadas están asociados a las enfermedades crónicas (WHO, 2015). Los sistemas sanitarios de los países desarrollados funcionan adecuadamente cuando se trata del cuidado de enfermedades agudas, pero no son lo suficientemente eficaces en la gestión de las enfermedades crónicas. Durante la última década, se han realizado esfuerzos para mejorar esta gestión, por medio de la utilización de estrategias de prevención y de reenfoque de la provisión de los servicios de atención para la salud (Kane et al. 2005). Según una revisión sistemática de modelos de cuidado de salud, comisionada por el sistema nacional de salud Británico, pocos modelos han conceptualizado cuáles son los componentes que hay que utilizar para proporcionar un cuidado crónico efectivo, y estos componentes no han sido suficientemente estructurados y articulados. Por lo tanto, no hay suficiente evidencia sobre el impacto real de cualquier modelo existente en la actualidad (Ham, 2006). Las innovaciones podrían ayudar a conseguir mejores diagnósticos, tratamientos y gestión de pacientes crónicos, así como a dar soporte a los profesionales y a los pacientes en el cuidado. Sin embargo, la forma en las que estas innovaciones se proporcionan no es lo suficientemente eficiente, efectiva y amigable para el usuario. Para mejorar esto, hace falta crear equipos de trabajo y estrategias multidisciplinares. En conclusión, hacen falta actividades que permitan conseguir que las innovaciones sean utilizadas en los sistemas de salud que quieren mejorar la gestión del cuidado crónico, para que sea posible: 1) traducir la “atención sanitaria basada en la evidencia” en “conocimiento factible”; 2) hacer frente a la complejidad de la atención sanitaria a través de una investigación multidisciplinaria; 3) identificar una aproximación sistemática para que se establezcan intervenciones innovadoras en el cuidado de salud. El marco de referencia desarrollado en este trabajo de investigación es un intento de aportar estas mejoras. Las siguientes hipótesis han sido propuestas: Hipótesis 1: es posible definir un proceso de traducción que convierta un modelo de cuidado crónico en una descripción estructurada de objetivos, requisitos e indicadores clave de rendimiento. Hipótesis 2: el proceso de traducción, si se ejecuta a través de elementos basados en la evidencia, multidisciplinares y de orientación económica, puede convertir un modelo de cuidado crónico en un marco descriptivo, que define el ciclo de vida de soluciones innovadoras para el cuidado de enfermedades crónicas. Hipótesis 3: es posible definir un método para evaluar procesos, resultados y capacidad de desarrollar habilidades, y asistir equipos multidisciplinares en la creación de soluciones innovadoras para el cuidado crónico. Hipótesis 4: es posible dar soporte al desarrollo de soluciones innovadoras para el cuidado crónico a través de un marco de referencia y conseguir efectos positivos, medidos en indicadores clave de rendimiento. Para verificar las hipótesis, se ha definido una aproximación metodológica compuesta de cuatro Fases, cada una asociada a una hipótesis. Antes de esto, se ha llevado a cabo una “Fase 0”, donde se han analizado los antecedentes sobre el problema (i.e. adopción sistemática de la innovación en el cuidado crónico) desde una perspectiva multi-dominio y multi-disciplinar. Durante la fase 1, se ha desarrollado un Proceso de Traducción del Conocimiento, elaborado a partir del JBI Joanna Briggs Institute (JBI) model of evidence-based healthcare (Pearson, 2005), y sobre el cual se han definido cuatro Bloques de Innovación. Estos bloques consisten en una descripción de elementos innovadores, definidos en la fase 0, que han sido añadidos a los cuatros elementos que componen el modelo JBI. El trabajo llevado a cabo en esta fase ha servido también para definir los materiales que el proceso de traducción tiene que ejecutar. La traducción que se ha llevado a cabo en la fase 2, y que traduce la mejor evidencia disponible de cuidado crónico en acción: resultado de este proceso de traducción es la parte descriptiva del marco de referencia, que consiste en una descripción de un modelo de cuidado crónico (se ha elegido el Chronic Care Model, Wagner, 1996) en términos de objetivos, especificaciones e indicadores clave de rendimiento y organizada en tres ciclos de innovación (diseño, implementación y evaluación). Este resultado ha permitido verificar la segunda hipótesis. Durante la fase 3, para demostrar la tercera hipótesis, se ha desarrollado un método-mixto de evaluación de equipos multidisciplinares que trabajan en innovaciones para el cuidado crónico. Este método se ha creado a partir del método mixto usado para la evaluación de equipo multidisciplinares translacionales (Wooden, 2013). El método creado añade una dimensión procedural al marco. El resultado de esta fase consiste, por lo tanto, en una primera versión del marco de referencia, lista para ser experimentada. En la fase 4, se ha validado el marco a través de un caso de estudio multinivel y con técnicas de observación-participante como método de recolección de datos. Como caso de estudio se han elegido las actividades de investigación que el grupo de investigación LifeStech ha desarrollado desde el 2008 para mejorar la gestión de la diabetes, actividades realizadas en un contexto internacional. Los resultados demuestran que el marco ha permitido mejorar las actividades de trabajo en distintos niveles: 1) la calidad y cantidad de las publicaciones; 2) se han conseguido dos contratos de investigación sobre diabetes: el primero es un proyecto de investigación aplicada, el segundo es un proyecto financiado para acelerar las innovaciones en el mercado; 3) a través de los indicadores claves de rendimiento propuestos en el marco, una prueba de concepto de un prototipo desarrollado en un proyecto de investigación ha sido transformada en una evaluación temprana de una intervención eHealth para el manejo de la diabetes, que ha sido recientemente incluida en Repositorio de prácticas innovadoras del Partenariado de Innovación Europeo en Envejecimiento saludable y activo. La verificación de las 4 hipótesis ha permitido demonstrar la hipótesis principal de este trabajo de investigación: es posible contribuir a crear un puente entre la atención sanitaria y la innovación y, por lo tanto, mejorar la manera en que el cuidado crónico sea procurado en los sistemas sanitarios. ABSTRACT Nowadays, for the first time in history, most people can expect to live into their sixties and beyond (United Nations, 2015). However, little evidence suggests that older people are experiencing better health than their parents, and most of the health problems of older age are linked to Chronic Diseases (WHO, 2015). The established health care systems in developed countries are well suited to the treatment of acute diseases but are mostly inadequate for dealing with CDs. Healthcare systems are challenging the burden of chronic diseases by putting more emphasis on the prevention of disease and by looking for new ways to reorient the provision of care (Kane et al., 2005). According to an evidence-based review commissioned by the British NHS Institute, few models have conceptualized effective components of care for CDs and these components have been not structured and articulated. “Consequently, there is limited evidence about the real impact of any of the existing models” (Ham, 2006). Innovations could support to achieve better diagnosis, treatment and management for patients across the continuum of care, by supporting health professionals and empowering patients to take responsibility. However, the way they are delivered is not sufficiently efficient, effective and consumer friendly. The improvement of innovation delivery, involves the creation of multidisciplinary research teams and taskforces, rather than just working teams. There are several actions to improve the adoption of innovations from healthcare systems that are tackling the epidemics of CDs: 1) Translate Evidence-Based Healthcare (EBH) into actionable knowledge; 2) Face the complexity of healthcare through multidisciplinary research; 3) Identify a systematic approach to support effective implementation of healthcare interventions through innovation. The framework proposed in this research work is an attempt to provide these improvements. The following hypotheses have been drafted: Hypothesis 1: it is possible to define a translation process to convert a model of chronic care into a structured description of goals, requirements and key performance indicators. Hypothesis 2: a translation process, if executed through evidence-based, multidisciplinary, holistic and business-oriented elements, can convert a model of chronic care in a descriptive framework, which defines the whole development cycle of innovative solutions for chronic disease management. Hypothesis 3: it is possible to design a method to evaluate processes, outcomes and skill acquisition capacities, and assist multidisciplinary research teams in the creation of innovative solutions for chronic disease management. Hypothesis 4: it is possible to assist the development of innovative solutions for chronic disease management through a reference framework and produce positive effects, measured through key performance indicators. In order to verify the hypotheses, a methodological approach, composed of four Phases that correspond to each one of the stated hypothesis, was defined. Prior to this, a “Phase 0”, consisting in a multi-domain and multi-disciplinary background analysis of the problem (i.e.: systematic adoption of innovation to chronic care), was carried out. During phase 1, in order to verify the first hypothesis, a Knowledge Translation Process (KTP) was developed, starting from the JBI Joanna Briggs Institute (JBI) model of evidence-based healthcare was used (Pearson, 2005) and adding Four Innovation Blocks. These blocks represent an enriched description, added to the JBI model, to accelerate the transformation of evidence-healthcare through innovation; the innovation blocks are built on top of the conclusions drawn after Phase 0. The background analysis gave also indication on the materials and methods to be used for the execution of the KTP, carried out during phase 2, that translates the actual best available evidence for chronic care into action: this resulted in a descriptive Framework, which is a description of a model of chronic care (the Chronic Care Model was chosen, Wagner, 1996) in terms of goals, specified requirements and Key Performance Indicators, and articulated in the three development cycles of innovation (i.e. design, implementation and evaluation). Thanks to this result the second hypothesis was verified. During phase 3, in order to verify the third hypothesis, a mixed-method to evaluate multidisciplinary teams working on innovations for chronic care, was created, based on a mixed-method used for the evaluation of Multidisciplinary Translational Teams (Wooden, 2013). This method adds a procedural dimension to the descriptive component of the Framework, The result of this phase consisted in a draft version of the framework, ready to be tested in a real scenario. During phase 4, a single and multilevel case study, with participant-observation data collection, was carried out, in order to have a complete but at the same time multi-sectorial evaluation of the framework. The activities that the LifeStech research group carried out since 2008 to improve the management of diabetes have been selected as case study. The results achieved showed that the framework allowed to improve the research activities in different directions: the quality and quantity of the research publications that LifeStech has issued, have increased substantially; 2 project grants to improve the management of diabetes, have been assigned: the first is a grant funding applied research while the second is about accelerating innovations into the market; by using the assessment KPIs of the framework, the proof of concept validation of a prototype developed in a research project was transformed into an early stage assessment of innovative eHealth intervention for Diabetes Management, which has been recently included in the repository of innovative practice of the European Innovation Partnership on Active and Health Ageing initiative. The verification of the 4 hypotheses lead to verify the main hypothesis of this research work: it is possible to contribute to bridge the gap between healthcare and innovation and, in turn, improve the way chronic care is delivered by healthcare systems.
Resumo:
Project pre-SCHOONER.
Resumo:
Project pre-DUGOUT.
Resumo:
Shipping list no.: 91-487-P.
Resumo:
Goldsmiths'-Kress no. 07074.
Resumo:
"17 July 1984."
Resumo:
Includes index.