335 resultados para Densification
Resumo:
Many typical ground improvement techniques that are used for liquefaction remediation, such as in situ densification, are not appropriate for application under existing buildings and more novel techniques are required. This paper describes centrifuge tests investigating the performance of rigid containment walls as a liquefaction remediation method. A simple frame structure, founded on a deep layer of loose, liquefiable sand was tested under earthquake shaking. Centrifuge tests were then carried out with containment walls around the base of the structure, extending through the full depth of the liquefiable layer and also partial depth. It is found that rigid containment walls can be very effective in reducing structural settlements primarily by preventing lateral movement of the foundation sand but the impermeability of the walls may also be important. Improvements in structural settlement are observed even when the walls do not extend through the full depth of the liquefiable layer, if the depth of the walls is greater than the depth of the free field liquefaction. In addition, it is found that the accelerations of the structure are not increased, provided there is no rigid, structural connection between the structure and the containment walls. © 2012 World Scientific Publishing Company.
Resumo:
Jacked piles are becoming a valuable installation method due to the low noise and vibration involved in the installation procedure. Cyclic jacking may be used in an attempt to decrease the required installation force. Small scale models of jacked piles were tested in sand and silt in a 10 m beam centrifuge. Two different piles were tested: smooth and rough. Piles were driven in two ways with monotonic and cyclically jacked installations. The cyclically jacked installation involves displacement reversal at certain depth for a fixed number of cycles. The depth of reversal and amplitude of the cycle vary for different tests. Data show that the base resistance increases during cyclic jacking due to soil compaction at the pile toe. On the other hand, shaft load decreases with the number of cycles applied due to densification of soil next to the pile shaft. Cyclic jacking may be used in unplugged tubular piles to decrease the required installation load. © 2013 Taylor & Francis Group, London.
Resumo:
We demonstrate the fabrication of horizontally aligned carbon nanotube (HA-CNT) networks by spatially programmable folding, which is induced by self-directed liquid infiltration of vertical CNTs. Folding is caused by a capillary buckling instability and is predicted by the elastocapillary buckling height, which scales with the wall thickness as t(3/2). The folding direction is controlled by incorporating folding initiators at the ends of the CNT walls, and the initiators cause a tilt during densification which precedes buckling. By patterning these initiators and specifying the wall geometry, we control the dimensions of HA-CNT patches over 2 orders of magnitude and realize multilayered and multidirectional assemblies. Multidirectional HA-CNT patterns are building blocks for custom design of nanotextured surfaces and flexible circuits.
Resumo:
Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) composites can be used as master molds for fabrication of high-aspect-ratio polymer microstructures having anisotropic nanoscale textures. The master molds are made by growth of vertically aligned CNT patterns, capillary densification of the CNTs using organic solvents, and capillary-driven infiltration of the CNT structures with SU-8. The composite master structures are then replicated in SU-8 using standard PDMS transfer molding methods. By this process, we fabricated a library of replicas including vertical micro-pillars, honeycomb lattices with sub-micron wall thickness and aspect ratios exceeding 50:1, and microwells with sloped sidewalls. This process enables batch manufacturing of polymer features that capture complex nanoscale shapes and textures, while requiring only optical lithography and conventional thermal processing. © 2011 The Royal Society of Chemistry.
Resumo:
Understanding and controlling the hierarchical self-assembly of carbon nanotubes (CNTs) is vital for designing materials such as transparent conductors, chemical sensors, high-performance composites, and microelectronic interconnects. In particular, many applications require high-density CNT assemblies that cannot currently be made directly by low-density CNT growth, and therefore require post-processing by methods such as elastocapillary densification. We characterize the hierarchical structure of pristine and densified vertically aligned multi-wall CNT forests, by combining small-angle and ultra-small-angle x-ray scattering (USAXS) techniques. This enables the nondestructive measurement of both the individual CNT diameter and CNT bundle diameter within CNT forests, which are otherwise quantified only by delicate and often destructive microscopy techniques. Our measurements show that multi-wall CNT forests grown by chemical vapor deposition consist of isolated and bundled CNTs, with an average bundle diameter of 16 nm. After capillary densification of the CNT forest, USAXS reveals bundles with a diameter 4 m, in addition to the small bundles observed in the as-grown forests. Combining these characterization methods with new CNT processing methods could enable the engineering of macro-scale CNT assemblies that exhibit significantly improved bulk properties. © 2011 American Institute of Physics.
Resumo:
The response of back-supported buffer plates comprising a solid face sheet and foam core backing impacted by a column of high velocity particles (sand slug) is investigated via a lumped parameter model and coupled discrete/continuum simulations. The buffer plate is either resting on (unattached) or attached to a rigid stationary foundation. The lumped parameter model is used to construct maps of the regimes of behaviour with axes of the ratio of the height of the sand slug to core thickness and the normalised core strength. Four regimes of behaviour are identified based on whether the core compression ends prior to the densification of the sand slug or vice versa. Coupled discrete/continuum simulations are also reported and compared with the lumped parameter model. While the model predicted regimes of behaviour are in excellent agreement with numerical simulations, the lumped parameter model is unable to predict the momentum transmitted to the supports as it neglects the role of elasticity in both the buffer plate and the sand slug. The numerical calculations show that the momentum transfer is minimised for intermediate values of the core strength when the so-called "soft-catch" mechanism is in play. In this regime the bounce-back of the sand slug is minimised which reduces the momentum transfer. However, in this regime, the impulse reduction is small (less than 10% of that transferred to a rigid structure). For high values of the core strength, the response of the buffer plate resembles a rigid plate with nearly no impulse mitigation while at low values of core strength, a slap event occurs when the face sheet impinges against the foundation due to full densification of the foam core. This slap event results in a significant enhancement of the momentum transfer to the foundation. The results demonstrate that appropriately designed buffer plates have potential as impulse mitigators in landmine loading situations. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. Centrifuge tests have been carried out to assess the effectiveness of existing remediation techniques in reducing the uplift of underground structures, namely in situ densification and the use of coarse sand backfill. The centrifuge test results showed that these methods do reduce the uplift displacement of buoyant structures. Their performance was thereafter linked to the theoretical mechanism of floatation of underground structures. Based on the understanding from preceding tests, a further improvement on the use of the coarse sand backfill was carried out, which produced a greater reduction in the uplift displacement of the structure. Each of these techniques, however, does pose issues when applied in the field, such as possible damage to surrounding structures, construction issues and maintenance problems.
Resumo:
Fast densification of 8YSZ ceramics under a high pressure of 4.5 GPa was carried out at different temperatures (800, 1000, 1450 degrees C), by which a high relative density above 92% could be obtained. FT-Raman spectra indicate that the 8YSZ underwent a phase transition from partially tetragonal to partially cubic phase as temperatures increase from 1000 to 1450 degrees C when sintering under high pressure. The electrical properties of the samples under different high-pressure sintering conditions were measured by complex impedance method. The total conductivity of 0.92 x 10(-2) S cm(-1) at 800 degrees C has been obtained for 8YSZ under high pressure at 1450 degrees C, which is about 200 degrees C lower than that of the samples prepared by conventional pressureless sintering.
Resumo:
Nanopowders of amorphous silicon nitride were densified and sintered without additives under ultrahigh pressure (1.0-5.0 GPa) between room temperature and 1600 degrees C. The powders had a mean diameter of 18 nm and contained similar to 5.0 wt% oxygen that came from air-exposure oxidation, Sintering results at different temperatures were characterized in terms of sintering density, hardness, phase structure, and grain size. It was observed that the nanopowders can be pressed to a high density (87%) even at room temperature under the high pressure. Bulk Si3N4 amorphous and crystalline ceramics (relative density: 95-98%) were obtained at temperatures slightly below the onset of crystallization (1000-1100 degrees C and above 1420 degrees C, respectively. Rapid grain growth occurred during the crystallization leading to a grain size (>160 nm) almost 1 order of magnitude greater than the starting particulate diameters, With the rise of sintering temperature, a final density was reached between 1350 and 1420 degrees C, which seemed to be independent of the pressure applied (1.0-5.0 GPa), The densification temperature observed under the high pressure is lower by 580 degrees C than that by hot isostatic pressing sintering, suggesting a significantly enhanced low-temperature sintering of the nanopowders under a high external pressure.
Resumo:
A supported lanthanum gallate (LSGM) electrolyte thin-film solid oxide fuel cell with Ni-YSZ cermet anode and strontium-doped lanthanum manganite (LSM)-yttria stabilized zirconia (YSZ) composite cathode was, for the first time, fabricated and tested. The cell was prepared by an unconventional approach, in which an LSGM thin film (about 15 mum thick) was first deposited on a porous substrate such as a porous YSZ disk by a wet process and sintered at a high temperature (above 1400degrees C). NiO was then incorporated into the porous substrate by a carefully controlled impregnation process and fired at a much lower temperature. In this way, the severe reaction between LSGM and NiO at a high temperature, which is required for the full densification of LSGM film, can be avoided. A strontium-doped LaMnO3 (LSM)-YSZ composite cathode was screen printed on the surface of the LSGM film and then fired at 1250degrees C. The electrolyte resistances of the SOFC single cells fabricated by this approach are much lower compared to those of thick LSGM film supported cells. A maximum output power density of over 0.85 W/cm(2) at 800degreesC with H-2 as fuel and air as oxidant for a fabricated cell was achieved. (C) 2002 The Electrochemical Society.
Resumo:
Thin film dielectrics based on titanium, zirconium or hafnium oxides are being introduced to increase the permittivity of insulating layers in transistors for micro/nanoelectronics and memory devices. Atomic layer deposition (ALD) is the process of choice for fabricating these films, as it allows for high control of composition and thickness in thin, conformal films which can be deposited on substrates with high aspect-ratio features. The success of this method depends crucially on the chemical properties of the precursor molecules. A successful ALD precursor should be volatile, stable in the gas-phase, but reactive on the substrate and growing surface, leading to inert by-products. In recent years, many different ALD precursors for metal oxides have been developed, but many of them suffer from low thermal stability. Much promise is shown by group 4 metal precursors that contain cyclopentadienyl (Cp = C5H5-xRx) ligands. One of the main advantages of Cp precursors is their thermal stability. In this work ab initio calculations were carried out at the level of density functional theory (DFT) on a range of heteroleptic metallocenes [M(Cp)4-n(L)n], M = Hf/Zr/Ti, L = Me and OMe, in order to find mechanistic reasons for their observed behaviour during ALD. Based on optimized monomer structures, reactivity is analyzed with respect to ligand elimination. The order in which different ligands are eliminated during ALD follows their energetics which was in agreement with experimental measurements. Titanocene-derived precursors, TiCp*(OMe)3, do not yield TiO2 films in atomic layer deposition (ALD) with water, while Ti(OMe)4 does. DFT was used to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)3 lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O (densification) during both of the ALD pulses. Blocking this step hindered further ALD reactions and for that reason no ALD growth is observed from TiCp*(OMe)3 and water. The thermal stability in the gas phase of Ti, Zr and Hf precursors that contain cyclopentadienyl ligands was also considered. The reaction that was found using DFT is an intramolecular α-H transfer that produces an alkylidene complex. The analysis shows that thermal stabilities of complexes of the type MCp2(CH3)2 increase down group 4 (M = Ti, Zr and Hf) due to an increase in the HOMO-LUMO band gap of the reactants, which itself increases with the electrophilicity of the metal. The reverse reaction of α-hydrogen abstraction in ZrCp2Me2 is 1,2-addition reaction of a C-H bond to a Zr=C bond. The same mechanism is investigated to determine if it operates for 1,2 addition of the tBu C-H across Hf=N in a corresponding Hf dimer complex. The aim of this work is to understand orbital interactions, how bonds break and how new bonds form, and in what state hydrogen is transferred during the reaction. Calculations reveal two synchronous and concerted electron transfers within a four-membered cyclic transition state in the plane between the cyclopentadienyl rings, one π(M=X)-to-σ(M-C) involving metal d orbitals and the other σ(C-H)-to-σ(X-H) mediating the transfer of neutral H, where X = C or N. The reaction of the hafnium dimer complex with CO that was studied for the purpose of understanding C-H bond activation has another interesting application, namely the cleavage of an N-N bond and resulting N-C bond formation. Analysis of the orbital plots reveals repulsion between the occupied orbitals on CO and the N-N unit where CO approaches along the N-N axis. The repulsions along the N-N axis are minimized by instead forming an asymmetrical intermediate in which CO first coordinates to one Hf and then to N. This breaks the symmetry of the N-N unit and the resultant mixing of MOs allows σ(NN) to be polarized, localizing electrons on the more distant N. This allowed σ(CO) and π(CO) donation to N and back-donation of π*(Hf2N2) to CO. Improved understanding of the chemistry of metal complexes can be gained from atomic-scale modelling and this provides valuable information for the design of new ALD precursors. The information gained from the model decomposition pathway can be additionally used to understand the chemistry of molecules in the ALD process as well as in catalytic systems.
Resumo:
It is widely accepted that volumetric contraction and solidification during the polymerization process of restorative composites in combination with bonding to the hard tissue result in stress transfer and inward deformation of the cavity walls of the restored tooth. Deformation of the walls decreases the size of the cavity during the filling process. This fact has a profound influence on the assumption-raised and discussed in this paper-that an incremental filling technique reduces the stress effect of composite shrinkage on the tooth. Developing stress fields for different incremental filling techniques are simulated in a numerical analysis. The analysis shows that, in a restoration with a well-established bond to the tooth-as is generally desired-incremental filling techniques increase the deformation of the restored tooth. The increase is caused by the incremental deformation of the preparation, which effectively decreases the total amount of composite needed to fill the cavity. This leads to a higher-stressed tooth-composite structure. The study also shows that the assessment of intercuspal distance measurements as well as simplifications based on generalization of the shrinkage stress state cannot be sufficient to characterize the effect of polymerization shrinkage in a tooth-restoration complex. Incremental filling methods may need to be retained for reasons such as densification, adaptation, thoroughness of cure, and bond formation. However, it is very difficult to prove that incrementalization needs to be retained because of the abatement of shrinkage effects.
Resumo:
Dense deployment of wireless local area network (WLAN) access points (APs) is an important part of the next generation Wi-Fi and standardization (802.11ax) efforts are underway. Increasing demand for WLAN connectivity motivates such dense deployments, especially in geographical areas with large numbers of users, such as stadiums, large enterprises, multi-tenant buildings, and urban cities. Although densification of WLAN APs guarantees coverage, it is susceptible to increased interference and uncoordinated association of stations (STAs) to APs, which degrade network throughput. Therefore, to improve network throughput, algorithms are proposed in this thesis to optimally coordinate AP associations in the presence of interference. In essence, coordination of APs in dense WLANs (DWLANs) is achieved through coordination of STAs' associations with APs. While existing approaches suggest tuning of APs' beacon powers or using transmit power control (TPC) for association control, here, the signal-to-interference-plus-noise ratio (SINRs) of STAs and the clear channel assessment (CCA) threshold of the 802.11 MAC protocol are employed. The proposed algorithms in this thesis enhance throughput and minimize coverage holes inherent in cell breathing and TPC techniques by not altering the transmit powers of APs, which determine cell coverage. Besides uncoordinated AP associations, unnecessary frequent transmission deferment is envisaged as another problem in DWLANs due to the clear channel assessment aspect of the carrier sensing multiple access collision avoidance (CSMA/CA) scheme in 802.11 standards and the short spatial reuse distance between co-channel APs. To address this problem in addition to AP association coordination, an algorithm is proposed for CCA threshold adjustment in each AP cell, such that CCA threshold used in one cell mitigates transmission deferment in neighboring cells. Performance evaluation reveals that the proposed association optimization algorithms achieve significant gain in throughput when compared with the default strongest signal first (SSF) association scheme in the current 802.11 standard. Also, further gain in throughput is observed when the CCA threshold adjustment is combined with the optimized association. Results show that when STA-AP association is optimized and CCA threshold is adjusted in each cell, throughput improves. Finally, transmission delay and the number of packet re-transmissions due to collision and contention significantly decrease.
Resumo:
Al2O3 and HfO2 films were deposited on germanium substrates by atomic layer deposition (ALD) and analyzed by MOS capacitor electrical characterization. In-situ plasma nitridation performed prior to ALD was found to improve the stability of the interface. For Al 2O3/GeON/Ge capacitors, a 450°C anneal in nitrogen ambient reduced hysteresis and oxide fixed charge to 90 mV and 1012 cm-2 respectively, with low leakage current density. On the contrary, degradation was observed for un-nitrided Al2O3/Ge capacitors after 300 and 400°C post-metal anneals. HfO2/GeON/Ge capacitors benefitted from a 400°C densification anneal but exhibited degradation after post-metal anneals at temperatures greater than 300°C. This degradation is attributed to the influence of Al electrodes on the HfO 2 gate stack. HfO2 is considered to be a suitable material for the gate stack and Al2O3 for the buried dielectric in a GeOI structure. ©The Electrochemical Society.