949 resultados para Dams safety
Resumo:
Object identification and tracking have become critical for automated on-site construction safety assessment. The primary objective of this paper is to present the development of a testbed to analyze the impact of object identification and tracking errors caused by data collection devices and algorithms used for safety assessment. The testbed models workspaces for earthmoving operations and simulates safety-related violations, including speed limit violations, access violations to dangerous areas, and close proximity violations between heavy machinery. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of device and algorithm errors were investigated for safety planning purposes.
Resumo:
This paper details the development of, and perceived role and effectiveness of an innovative intervention designed to ultimately improve the safety of a group of community care (CC) nurses while driving. Recruiting participants from an Australian CC nursing car fleet, qualitative responses from a series of open-ended questions were obtained from drivers (n = 36), supervisors (n = 22), and managers (n = 6). The findings supported the effectiveness of the intervention in reducing self-reported speeding and promoting greater insight into one’s behaviour on the road. This research has important practical implications in that it highlights the value of developing an intervention based on a sound theoretical framework and which is aligned with the needs and beliefs of personnel within a particular organisation.
Resumo:
[Selection of papers from the Older Road User Safety Symposium, 26 November 2000, Brisbane, Australia.]----- This publication is a selection of papers on older road user safety which were presented at the Older Road User Safety Symposium on Sunday 26 November 2000 at the Sheraton Brisbane Hotel, Queensland, Australia. The Symposium was held on the day before Australia’s annual Road Safety Research, Policing and Education Conference, which provided an opportunity to garner both presenters and participants from the wider road safety community in Australia. Road safety is a large and diverse area of scholarship and practice, and many disciplines are drawn on in the processes of understanding and addressing road safety problems. The safety of older road users is no different. As this selection shows, work on older road user safety can be informed by demography, research on the mental and physical effects of ageing, social research on older people as road users, evaluation of educational and behavioural interventions, road crash analysis, engineering research and practice, and reviews of policy approaches within Australia and elsewhere. It is possible to summarise these into four constellations, which are reflected in the papers selected for this publication: social impacts and responses; physical and cognitive capability; specific road use performance; and environment/ecology. Though three years have passed since the Symposium, the issues raised in these papers remain current.
Resumo:
In addition to the established problem of road safety in developing countries such as Indonesia, the agencies responsible for road safety often lack personnel with professional training in road safety. In Indonesia this is compounded by a need for more effective collaboration between agencies. In 2009, CARRS-Q was commissioned under the Indonesia Transport Safety Assistance Package to provide professional training in road safety for middle level officers in Jakarta, the province of Jawa Barat, and the cities of Bandung, Bogor and Sukabumi, aimed at developing action plans and fostering collaboration between agencies. This was achieved through a workshop, which followed up by a second workshop with the same participants. The course was very well received, action plans were successfully prepared during the first workshop, and most had progressed well by the time of the second workshop. Good cooperation between agencies was also evident. There would be considerable benefits in extending modified workshops more widely in Indonesia.
Resumo:
Road crashes are a significant problem in developing countries such as Pakistan. Attitudes are among the human factors which influence risky road use and receptiveness to interventions. Fatalism is a set of attitudes known to be important in Pakistan and other developing countries; however it is rarely addressed in the road safety literature. Two broad types of fatalism are “theological fatalism” and “empirical fatalism”, both of which are found in developed countries as well as in developing countries. Where research has been conducted into the issue, fatalism is considered to interfere with messages aimed at improving road safety. Pakistan has a serious road crash problem, and there is sufficient information to suggest that fatalism is an important contributing factor to the problem, but a better understanding of how fatalism operates in Pakistan is needed if effective prevention strategies are to be developed. A proposed study using an anthropological approach is described which will be exploratory in nature and which is aimed at investigating fatalism and related concepts among Pakistani road users and those who develop and implement road safety policy.
Resumo:
The International Road Assessment Program (iRAP) is a not-for-profit organisation that works in partnership with governments and non-government organisations in all parts of the world to make roads safe. The iRAP Malaysia pilot study on 3700km of road identified the potential to prevent 31,800 deaths and serious injuries over the next 20 years from proven engineering improvements. To help ensure the iRAP data and results are available to planners and engineers, iRAP, together with staff from the Centre for Accident Research and Road Safety – Queensland (CARRS-Q) and the Malaysian Institute of Road Safety Research (MIROS), developed a five-day iRAP training course that covers the background, theory and practical application of iRAP protocols, with a special focus on Malaysian case studies. Funding was provided by a competitive grant from the Australia-Malaysia Institute.
Resumo:
Traffic oscillations are typical features of congested traffic flow that are characterized by recurring decelerations followed by accelerations. However, people have limited knowledge on this complex topic. In this research, 1) the impact of traffic oscillations on freeway crash occurrences has been measured using the matched case-control design. The results consistently reveal that oscillations have a more significant impact on freeway safety than the average traffic states. 2) Wavelet Transform has been adopted to locate oscillations' origins and measure their characteristics along their propagation paths using vehicle trajectory data. 3) Lane changing maneuver's impact on the immediate follower is measured and modeled. The knowledge and the new models generated from this study could provide better understanding on fundamentals of congested traffic; enable improvements to existing traffic control strategies and freeway crash countermeasures; and instigate people to develop new operational strategies with the objective of reducing the negative effects of oscillatory driving.
Resumo:
Traffic safety in rural highways can be considered as a constant source of concern in many countries. Nowadays, transportation professionals widely use Intelligent Transportation Systems (ITS) to address safety issues. However, compared to metropolitan applications, the rural highway (non-urban) ITS applications are still not well defined. This paper provides a comprehensive review on the existing ITS safety solutions for rural highways. This research is mainly focused on the infrastructure-based control and surveillance ITS technology, such as Crash Prevention and Safety, Road Weather Management and other applications, that is directly related to the reduction of frequency and severity of accidents. The main outcome of this research is the development of a ‘ITS control and surveillance device locating model’ to achieve the maximum safety benefit for rural highways. Using cost and benefits databases of ITS, an integer linear programming method is utilized as an optimization technique to choose the most suitable set of ITS devices. Finally, computational analysis is performed on an existing highway in Iran, to validate the effectiveness of the proposed locating model.
Resumo:
This paper presents an automated image‐based safety assessment method for earthmoving and surface mining activities. The literature review revealed the possible causes of accidents on earthmoving operations, investigated the spatial risk factors of these types of accident, and identified spatial data needs for automated safety assessment based on current safety regulations. Image‐based data collection devices and algorithms for safety assessment were then evaluated. Analysis methods and rules for monitoring safety violations were also discussed. The experimental results showed that the safety assessment method collected spatial data using stereo vision cameras, applied object identification and tracking algorithms, and finally utilized identified and tracked object information for safety decision making.
Resumo:
Regardless of technology benefits, safety planners still face difficulties explaining errors related to the use of different technologies and evaluating how the errors impact the performance of safety decision making. This paper presents a preliminary error impact analysis testbed to model object identification and tracking errors caused by image-based devices and algorithms and to analyze the impact of the errors for spatial safety assessment of earthmoving and surface mining activities. More specifically, this research designed a testbed to model workspaces for earthmoving operations, to simulate safety-related violations, and to apply different object identification and tracking errors on the data collected and processed for spatial safety assessment. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of the errors were investigated for the safety planning purpose.
Resumo:
Research has demonstrated that driving a vehicle for work is potentially one of the most dangerous workplace activities. Although organisations are required to meet legislative obligations under workplace health and safety in relation to work related vehicle use, organisations are often reluctant to acknowledge and address the risks associated with the vehicle as a workplace. Recent research undertaken investigating the challenges associated with driver and organisational aspects of fleet safety are discussed. This paper provides a risk management framework to assist organisations to meet legislative requirements and reduce the risk associated with vehicle use in the workplace. In addition the paper argues that organisations need to develop and maintain a positive fleet safety culture to proactively mitigate risk in an effort to reduce the frequency and severity of vehicle related incidents within the workplace.
Resumo:
Australian construction and building workers are exposed to serious workplace risks - including injury, illness and death - and although there have been improvements in occupational health and safety (OHS) performance over the past 20 years, the injury and fatality rate in the Australian construction industry remains a matter of concern. The concept of safety culture is rapidly being adopted in the industry, including recognising the critical role that organisational leaders play in overall safety performance. This paper reviews recent research in construction safety leadership and provides some examples and applications relevant to risk reduction in the workforce. By focusing on developing safety competency in those that fulfil safety critical roles, and clearly articulating the relevant safety management tasks, leaders can positively influence the organisation’s safety culture. Finally, some promising research on Safety Effectiveness Indicators (SEIs) may be an industry-friendly solution to reducing workplace risks across the industry, by providing a credible, accurate, and timely measure of safety performance.