989 resultados para DIFFUSION TENSOR IMAGING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High Angular Resolution Diffusion Imaging (HARDI) techniques, including Diffusion Spectrum Imaging (DSI), have been proposed to resolve crossing and other complex fiber architecture in the human brain white matter. In these methods, directional information of diffusion is inferred from the peaks in the orientation distribution function (ODF). Extensive studies using histology on macaque brain, cat cerebellum, rat hippocampus and optic tracts, and bovine tongue are qualitatively in agreement with the DSI-derived ODFs and tractography. However, there are only two studies in the literature which validated the DSI results using physical phantoms and both these studies were not performed on a clinical MRI scanner. Also, the limited studies which optimized DSI in a clinical setting, did not involve a comparison against physical phantoms. Finally, there is lack of consensus on the necessary pre- and post-processing steps in DSI; and ground truth diffusion fiber phantoms are not yet standardized. Therefore, the aims of this dissertation were to design and construct novel diffusion phantoms, employ post-processing techniques in order to systematically validate and optimize (DSI)-derived fiber ODFs in the crossing regions on a clinical 3T MR scanner, and develop user-friendly software for DSI data reconstruction and analysis. Phantoms with a fixed crossing fiber configuration of two crossing fibers at 90° and 45° respectively along with a phantom with three crossing fibers at 60°, using novel hollow plastic capillaries and novel placeholders, were constructed. T2-weighted MRI results on these phantoms demonstrated high SNR, homogeneous signal, and absence of air bubbles. Also, a technique to deconvolve the response function of an individual peak from the overall ODF was implemented, in addition to other DSI post-processing steps. This technique greatly improved the angular resolution of the otherwise unresolvable peaks in a crossing fiber ODF. The effects of DSI acquisition parameters and SNR on the resultant angular accuracy of DSI on the clinical scanner were studied and quantified using the developed phantoms. With a high angular direction sampling and reasonable levels of SNR, quantification of a crossing region in the 90°, 45° and 60° phantoms resulted in a successful detection of angular information with mean ± SD of 86.93°±2.65°, 44.61°±1.6° and 60.03°±2.21° respectively, while simultaneously enhancing the ODFs in regions containing single fibers. For the applicability of these validated methodologies in DSI, improvement in ODFs and fiber tracking from known crossing fiber regions in normal human subjects were demonstrated; and an in-house software package in MATLAB which streamlines the data reconstruction and post-processing for DSI, with easy to use graphical user interface was developed. In conclusion, the phantoms developed in this dissertation offer a means of providing ground truth for validation of reconstruction and tractography algorithms of various diffusion models (including DSI). Also, the deconvolution methodology (when applied as an additional DSI post-processing step) significantly improved the angular accuracy of the ODFs obtained from DSI, and should be applicable to ODFs obtained from the other high angular resolution diffusion imaging techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MRI diffusion tensor imaging (DTI), optimized for measuring the trace of the diffusion tensor, was used to investigate microstructural changes in the brains of 12 individuals with schizophrenia compared with 12 matched control subjects. To control for the effects of anatomic variation between subject groups, all participants' diffusion images were non-linearly registered to standard anatomical space. Significant statistical differences in mean diffusivity (MD) measures between the two groups were determined on a pixel-by-pixel basis, using Gaussian random field theory. We found significantly elevated MD measures within temporal, parietal and prefrontal cortical regions in the schizophrenia group (P > 0.001), especially within the medial frontal gyrus and anterior cingulate. The dorsal medial and anterior nucleus of the thalamus, including the caudate, also exhibited significantly increased MD in the schizophrenia group (P > 0.001). This study has shown for the first time that MD measures offer an alternative strategy for investigating altered prefrontal-thalamic circuitry in schizophrenia. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of molecular criteria into the classification of diffuse gliomas has added interesting practical implications to glioma management. This has created a new clinical need for correlating imaging characteristics with glioma genotypes, also known as radiogenomics or imaging genomics. Whilst many studies have primarily focused on the use of advanced magnetic resonance imaging (MRI) techniques for radiogenomics purposes, conventional MRI sequences still remain the reference point in the study and characterization of brain tumours. Moreover, a different approach may rely on diffusion-weighted imaging (DWI) usage, which is considered a “conventional” sequence in line with recently published directions on glioma imaging. In a non-invasive way, it can provide direct insight into the microscopic physical properties of tissues. Considering that Isocitrate-Dehydrogenase gene mutations may reflect alterations in metabolism, cellularity, and angiogenesis, which may manifest characteristic features on an MRI, the identification of specific MRI biomarkers could be of great interest in managing patients with brain gliomas. My study aimed to evaluate the presence of specific MRI-derived biomarkers of IDH molecular status through conventional MRI and DWI sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La quantificazione non invasiva delle caratteristiche microstrutturali del cervello, utilizzando la diffusion MRI (dMRI), è diventato un campo sempre più interessante e complesso negli ultimi due decenni. Attualmente la dMRI è l’unica tecnica che permette di sondare le proprietà diffusive dell’acqua, in vivo, grazie alla quale è possibile inferire informazioni su scala mesoscopica, scala in cui si manifestano le prime alterazioni di malattie neurodegenerative, da tale tipo di dettaglio è potenzialmente possibile sviluppare dei biomarcatori specifici per le fasi iniziali di malattie neurodegenerative. L’evoluzione hardware degli scanner clinici, hanno permesso lo sviluppo di modelli di dMRI avanzati basati su acquisizioni multi shell, i quali permettono di ovviare alle limitazioni della Diffusion Tensor Imaging, in particolare tali modelli permettono una migliore ricostruzione trattografica dei fasci di sostanza bianca, grazie ad un’accurata stima della Orientation Distribution Function e la stima quantitativa di parametri che hanno permesso di raggiungere una miglior comprensione della microstruttura della sostanza bianca e delle sue eventuali deviazioni dalla norma. L’identificazione di biomarcatori sensibili alle prime alterazioni microstrutturali delle malattie neurodegenerative è uno degli obbiettivi principali di tali modelli, in quanto consentirebbero una diagnosi precoce e di conseguenza un trattamento terapeutico tempestivo prima di una significante perdità cellulare. La trattazione è suddivisa in una prima parte di descrizione delle nozioni fisiche di base della dMRI, dell’imaging del tensore di diffusione e le relative limitazioni, ed in una seconda parte dove sono analizzati tre modelli avanzati di dMRI: Diffusion Kurtosis Imaging, Neurite Orientation Dispersion and Density Imaging e Multi Shell Multi Tissue Constrained Spherical Deconvolution. L'obiettivo della trattazione è quello di offrire una panoramica sulle potenzialità di tali modelli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 x 3 and 2 x 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resting state functional magnetic resonance imaging (fMRI) reveals a distinct network of correlated brain function representing a default mode state of the human brain The underlying structural basis of this functional connectivity pattern is still widely unexplored We combined fractional anisotropy measures of fiber tract integrity derived from diffusion tensor imaging (DTI) and resting state fMRI data obtained at 3 Tesla from 20 healthy elderly subjects (56 to 83 years of age) to determine white matter microstructure e 7 underlying default mode connectivity We hypothesized that the functional connectivity between the posterior cingulate and hippocampus from resting state fMRI data Would be associated with the white matter microstructure in the cingulate bundle and fiber tracts connecting posterior cingulate gyrus With lateral temporal lobes, medial temporal lobes, and precuneus This was demonstrated at the p<0001 level using a voxel-based multivariate analysis of covariance (MANCOVA) approach In addition, we used a data-driven technique of joint independent component analysis (ICA) that uncovers spatial pattern that are linked across modalities. It revealed a pattern of white matter tracts including cingulate bundle and associated fiber tracts resembling the findings from the hypothesis-driven analysis and was linked to the pattern of default mode network (DMN) connectivity in the resting state fMRI data Out findings support the notion that the functional connectivity between the posterior cingulate and hippocampus and the functional connectivity across the entire DMN is based oil distinct pattern of anatomical connectivity within the cerebral white matter (C) 2009 Elsevier Inc All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abnormalities in fronto-limbic-striatal white matter (WM) have been reported in bipolar disorder (BD), but results have been inconsistent across studies. Furthermore, there have been no detailed investigations as to whether acute mood states contribute to microstructural changes in WM tracts. In order to compare fiber density and structural integrity within WM tracts between BD depression and remission, whole-brain fractional anisotropy (FA) and mean diffusivity (MD) were assessed in 37 bipolar I disorder (BD-I) patients (16 depressed and 21 remitted), and 26 healthy individuals with diffusion tensor imaging. Significantly decreased FA and increased MD in bilateral prefronto-limbic-striatal white matter and right inferior fronto-occipital, superior and inferior longitudinal fasciculi were shown in all BD-I patients versus controls, as well as in depressed BD-I patients compared to both controls and remitted BD-I patients. Depressed BD-I patients also exhibited increased FA in the ventromedial prefrontal cortex. Remitted BD-I patients did not differ from controls in FA or MD. These findings suggest that BD-I depression may be associated with acute microstructural WM changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The absence of pathophysiologically relevant diagnostic markers of bipolar disorder (BD) leads to its frequent misdiagnosis as unipolar depression (UD). We aimed to determine whether whole brain white matter connectivity differentiated BD from UD depression. Methods: We employed a three-way analysis of covariance, covarying for age, to examine whole brain fractional anisotropy (FA), and corresponding longitudinal and radial diffusivity, in currently depressed adults: 15 with BD-type I (mean age 36.3 years, SD 12.0 years), 16 with recurrent UD (mean age 32.3 years, SD 10.0 years), and 24 healthy control adults (HC) (mean age 29.5 years, SD 9.43 years). Depressed groups did not differ in depression severity, age of illness onset, and illness duration. Results: There was a main effect of group in left superior and inferior longitudinal fasciculi (SLF and ILF) (all F >= 9.8; p <= .05, corrected). Whole brain post hoc analyses (all t >= 4.2; p <= .05, corrected) revealed decreased FA in left SLF in BD, versus UD adults in inferior temporal cortex and, versus HC, in primary sensory cortex (associated with increased radial and decreased longitudinal diffusivity, respectively); and decreased FA in left ILF in UD adults versus HC. A main effect of group in right uncinate fasciculus (in orbitofrontal cortex) just failed to meet significance in all participants but was present in women. Post hoc analyses revealed decreased right uncinate fasciculus FA in all and in women, BD versus HC. Conclusions: White matter FA in left occipitotemporal and primary sensory regions supporting visuospatial and sensory processing differentiates BD from UD depression. Abnormally reduced FA in right fronto-temporal regions supporting mood regulation, might underlie. predisposition to depression in BD. These measures might help differentiate pathophysiologic processes of BD versus UD depression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few studies have investigated in vivo changes of the cholinergic basal forebrain in Alzheimer`s disease (AD) and amnestic mild cognitive impairment (MCI), an at risk stage of AD. Even less is known about alterations of cortical projecting fiber tracts associated with basal forebrain atrophy. In this study, we determined regional atrophy within the basal forebrain in 21 patients with AD and 16 subjects with MCI compared to 20 healthy elderly subjects using deformation-based morphometry of MRI scans. We assessed effects of basal forebrain atrophy on fiber tracts derived from high-resolution diffusion tensor imaging (DTI) using tract-based spatial statistics. We localized significant effects relative to a map of cholinergic nuclei in MRI standard space as determined from a postmortem brain. Patients with AD and MCI subjects showed reduced volumes in basal forebrain areas corresponding to anterior medial and lateral, intermediate and posterior nuclei of the Nucleus basalis of Meynert (NbM) as well as in the diagonal band of Broca nuclei (P < 0.01). Effects in MCI subjects were spatially more restricted than in AD, but occurred at similar locations. The volume of the right antero-lateral NbM nucleus was correlated with intracortical projecting fiber tract integrity such as the corpus callosum, cingulate, and the superior longitudinal, inferior longitudinal, inferior fronto-occipital, and uncinate fasciculus (P < 0.05, corrected for multiple comparisons). Our findings suggest that a multimodal MRI-DTI approach is supportive to determine atrophy of cholinergic nuclei and its effect on intracortical projecting fiber tracts in AD. Hum Brain Mapp 32: 1349-1362, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulatioin in BD. Objective: To use tract-based spatial statistics (TBSS) to examine VVM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Design: Cross-sectional, case-control, whole-brain DTI using TBSS. Setting: University research institute. Participants: Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type 1 (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Main Outcome Measures: Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Results: Subjects with BD vs controls had significantly greater FA (t > 3.0, P <=.05 corrected) in the left uncinate fasciculus (reduced radial diffusivity distally and increased longitudinal diffusivity centrally), left optic radiation (increased longitudinal diffusivity), and right anterothalamic radiation (no significant diffusivity change). Subjects with BD vs controls had significantly reduced FA (t > 3.0, P <=.05 corrected) in the right uncinate fasciculus (greater radial diffusivity). Among subjects with BD, significant negative correlations (P <.01) were found between age and FA in bilateral uncinate fasciculi and in the right anterothalamic radiation, as well as between medication load and FA in the left optic radiation. Decreased FA (P <.01) was observed in the left optic radiation and in the right anterothalamic radiation among subjects with BD taking vs those not taking mood stabilizers, as well as in the left optic radiation among depressed vs remitted subjects with BD. Subjects having BD with vs without lifetime alcohol or other drug abuse had significantly decreased FA in the left uncinate fasciculus. Conclusions: To our knowledge, this is the first study to use TBSS to examine WM in subjects with BD. Subjects with BD vs controls showed greater WM FA in the left OMPFC that diminished with age and with alcohol or other drug abuse, as well as reduced WM FA in the right OMPFC. Mood stabilizers and depressed episode reduced WM FA in left-sided sensory visual processing regions among subjects with BD. Abnormal right vs left asymmetry in FA in OMPFC WM among subjects with BD, likely reflecting increased proportions of left-sided longitudinally aligned and right-sided obliquely aligned myelinated fibers, may represent a biologic mechanism for mood dysregulation in BD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In social anxiety disorder (SAD), impairments in limbic/paralimbic structures are associated with emotional dysregulation and inhibition of the medial prefrontal cortex (MPFq. Little is known, however, about alterations in limbic and frontal regions associated with the integrated morphometric, functional, and structural architecture of SAD. Whether altered gray matter volume is associated with altered functional and structural connectivity in SAD. Three techniques were used with 18 SAD patients and 18 healthy controls: voxel-based morphometry; resting-state functional connectivity analysis; and diffusion tensor imaging tractography. SAD patients exhibited significantly decreased gray matter volumes in the right posterior inferior temporal gyrus (ITG) and right parahippocampal/hippocampal gyrus (PHG/HIP). Gray matter volumes in these two regions negatively correlated with the fear factor of the Liebowitz Social Anxiety Scale. In addition, we found increased functional connectivity in SAD patients between the right posterior ITG and the left inferior occipital gyrus, and between the right PHF/HIP and left middle temporal gyms. SAD patients had increased right MPFC volume, along with enhanced structural connectivity in the genu of the corpus callosum. Reduced limbic/paralimbic volume, together with increased resting-state functional connectivity, suggests the existence of a compensatory mechanism in SAD. Increased MPFC volume, consonant with enhanced structural connectivity, suggests a long-time overgeneralization of structural connectivity and a role of this area in the mediation of clinical severity. Overall, our results may provide a valuable basis for future studies combining morphometric, functional and anatomical data in the search for a comprehensive understanding of the neural circuitry underlying SAD. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perceber a rede estrutural formada pelos neurónios no cérebro a nível da macro escala é um desafio atual na área das neurociências. Neste estudo analisou-se a conectividade estrutural do cérebro em 22 indivíduos saudáveis e em dois doentes com epilepsia pós-traumática. Avaliaram-se as diferenças entre estes dois grupos. Também se pesquisaram diferenças a nível do género e idade no grupo de indivíduos saudáveis e os que têm valores médios mais elevados nas métricas de caracterização da rede. Para tal, desenvolveu-se um protocolo de análise recorrendo a diversos softwares especializados e usaram-se métricas da Teoria dos Grafos para a caracterização da conectividade estrutural entre 118 regiões encefálicas distintas. Dentro do grupo dos indivíduos saudáveis concluiu-se que os homens, no geral, são os que têm média mais alta para as métricas de caracterização da rede estrutural. Contudo, não se observaram diferenças significativas em relação ao género nas métricas de caracterização global do cérebro. Relativamente à idade, esta correlaciona-se negativamente, no geral, com as métricas de caracterização da rede estrutural. As regiões onde se observaram as diferenças mais importantes entre indivíduos saudáveis e doentes são: o sulco rolândico, o hipocampo, o pré-cuneus, o tálamo e o cerebelo bilateralmente. Estas diferenças são consistentes com as imagens radiológicas dos doentes e com a literatura estudada sobre a epilepsia pós-traumática. Preveem-se desenvolvimentos para o estudo da conectividade estrutural do cérebro humano, uma vez que a sua potencialidade pode ser combinada com outros métodos de modo a caracterizar as alterações dos circuitos cerebrais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer Disease (AD) is characterized by progressive cognitive decline and dementia. Earlier diagnosis and classification of different stages of the disease are currently the main challenges and can be assessed by neuroimaging. With this work we aim to evaluate the quality of brain regions and neuroimaging metrics as biomarkers of AD. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox functionalities were used to study AD by T1weighted, Diffusion Tensor Imaging and 18FAV45 PET, with data obtained from the AD Neuroimaging Initiative database, specifically 12 healthy controls (CTRL) and 33 patients with early mild cognitive impairment (EMCI), late MCI (LMCI) and AD (11 patients/group). The metrics evaluated were gray-matter volume (GMV), cortical thickness (CThk), mean diffusivity (MD), fractional anisotropy (FA), fiber count (FiberConn), node degree (Deg), cluster coefficient (ClusC) and relative standard-uptake-values (rSUV). Receiver Operating Characteristic (ROC) curves were used to evaluate and compare the diagnostic accuracy of the most significant metrics and brain regions and expressed as area under the curve (AUC). Comparisons were performed between groups. The RH-Accumbens/Deg demonstrated the highest AUC when differentiating between CTRLEMCI (82%), whether rSUV presented it in several brain regions when distinguishing CTRL-LMCI (99%). Regarding CTRL-AD, highest AUC were found with LH-STG/FiberConn and RH-FP/FiberConn (~100%). A larger number of neuroimaging metrics related with cortical atrophy with AUC>70% was found in CTRL-AD in both hemispheres, while in earlier stages, cortical metrics showed in more confined areas of the temporal region and mainly in LH, indicating an increasing of the spread of cortical atrophy that is characteristic of disease progression. In CTRL-EMCI several brain regions and neuroimaging metrics presented AUC>70% with a worst result in later stages suggesting these indicators as biomarkers for an earlier stage of MCI, although further research is necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study is to explore obsessive-compulsive disorder (OCD)-related abnormalities in white matter connectivity in OCD for a core region associated with inhibitory control [i.e. inferior frontal gyrus (IFG)]. Fifteen patients with OCD (11 men) and 15 healthy controls (nine men) underwent diffusion tensor imaging scanning to study four diffusivity indexes of white matter integrity [fractional anisotropy, mean diffusivity (MD), axial diffusivity and radial diffusivity (RD)]. The results showed that persons with OCD manifested significantly lower fractional anisotropy levels in the bilateral IFG as well as its parcellations in the pars opercularis, pars triangularis, and pars orbitalis. Significantly higher levels of MD, RD were evident for the OCD group in the IFG as a whole as well as in the bilateral subregions of the pars triangularis and pars opercularis (for MD and RD), the right side of the pars orbitalis (for RD), and the left side of the pars triangularis and right side pars opercularis (for axial diffusivity). Overall, the results suggest significant alterations in structural connectivity, probably associated with myelination and axonal abnormalities in the IFG of OCD patients.