988 resultados para DC model
Resumo:
A 5V/1 V Switched Capacitor (SC) dc-dc converter designed for a 0.18μm CMOS process is analysed in detail, in this paper. Analytical equations are derived for the voltages and currents through the main components of the SC converter. The model includes switches, capacitors, equivalent series resistances and the load. The switches in the converter are represented by MOSFETs in the UMC 0.18μm CMOS process. The impact of system parameters on output voltage ripple are studied using the analytical expressions.
Resumo:
Details of a lumped parameter thermal model for studying thermal aspects of the frame size 180 nested loop rotor BDFM at the University of Cambridge are presented. Predictions of the model are verified against measured end winding and rotor bar temperatures that were measured with the machine excited from a DC source. The model is used to assess the thermal coupling between the stator windings and rotor heating. The thermal coupling between the stator windings is assessed by studying the difference of the steady state temperatures of the two stator end windings for different excitations. The rotor heating is assessed by studying the temperatures of regions of interest for different excitations.
Resumo:
We have studied numerically and experimentally the magnetic flux penetration in high-Tc superconducting tube subjected to a uniform magnetic field parallel to its long axis. This study is carried in view of designing low-frequency magnetic shields by exploiting the diamagnetic properties of high-Tc superconducting ceramics. We have measured the field attenuation for applied magnetic fields in the frequency range 5 mHz-0.1 Hz by Hall probe measurements and at audio frequencies using a sensing coil. A simple 1D analysis using the Kim critical state model was found to be able to reproduce the experimental data satisfactorily. We have also determined the phase shift between the internal and the applied field both experimentally and numerically. Finally, we have studied the sweep rate dependence of the magnetic shielding properties, using data recorded either at several constant sweep rates dB /dt or at several AC fields of various amplitudes and frequencies. Both methods agree with each other and lead to a n-value of the E ∼ Jn law equal to ∼40 at 77 K. © 2009 IEEE.
Resumo:
CaCu3Ti(4-x)Nb(x)O(12) (x = 0, 0.01, 0.08, 0.2) ceramics were fabricated by a conventional solid-state reaction method. The ceramics showed the body-centered cubic structure without any foreign phases and the grain size decreases with Nb doping. Two Debye-type relaxations were observed for the Nb-doped samples at low frequency and high frequency, respectively. The complex electric modulus analysis revealed that the surface layer, grains and grain boundaries contributed to the dielectric constant. The low-frequency dielectric constant relative to the surface layer decreased to a minimum and then increased with the dc bias voltage at 100 Hz, which were well explained in terms of a model containing two metal oxide semiconductors in series, confirming the surface layer in the ceramics. The shift voltage V-B corresponding to the minimal capacitance increased with increase of the composition x. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Based on morphology observed by atomic force microscopy, a geometrical model was proposed in order to explain the statistical results obtained from morphology observation on GaN in initial growth stage. Four parameters were introduced to describe the morphology characteristics in this model. Least-square fitting of height distribution was performed. The height distribution derived from the model agreed well with that obtained from experimental records. It was also found that the model should be further advanced to understand the growth of GaN in initial growth stage. (C) 2002 Elsevier Science BY. All rights reserved.
Resumo:
Within the one-dimensional tight-binding model;rnd chi-3 approximation, we have calculated four-wave-mixing (FWM) signals for a semiconductor superlattice in the presence of both static and high-frequency electric fields. When the exciton effect is negligible, the time-periodic field dynamically delocalizes the otherwise localized Wannier-Stark states, and accordingly quasienergy band structures are formed, and manifest in the FWM spectra as a series of equally separated continua. The width of each continuum is proportional to the joint width of the valence and conduction minibands and is independent of the Wannier-Stark index. The realistic homogeneous broadening blurs the continua into broad peaks, whose line shapes, far from the Lorentzian, vary with the delay time in the FWM spectra. The swinging range of the peaks is just the quasienergy bandwidth. The dynamical delocalization (DDL) also induces significant FWM signals well beyond the excitation energy window. When the Coulomb interaction is taken into account, the unequal spacing between the excitonic Wannier-Stark levels weakens the DDL effect, and the FWM spectrum is transformed into groups of discrete lines. Strikingly, the groups are evenly spaced by the ac field frequency, reflecting the characteristic of the quasienergy states. The homogeneous broadening again smears out the line structures, leading to the excitonic FWM spectra quite similar to those without the exciton effect. However, all these features predicted by the dynamical theory do not appear in a recent experiment [Phys. Rev. Lett. 79, 301 (1997)], in which, by using the static approximation the observed Wannier-Stark ladder with delay-time-dependent spacing in the FWM spectra is attributed to a temporally periodic dipole field, produced by the Bloch oscillation of electrons in real space. The contradiction between the dynamical theory and the experiments is discussed. In addition, our calculation indicates that the dynamical localization coherently enhances the time-integrated FWM signals. The feasibility of using such a technique to study the dynamical localization phenomena is shown. [S0163-1829(99)10607-6].
Resumo:
This paper presents a low-voltage, high performance charge pump circuit suitable for implementation in standard CMOS technologies. The proposed charge pump has been used as a part of the power supply section of fully integrated passive radio frequency identification(RFID) transponder IC, which has been implemented in a 0.35-um CMOS technology with embedded EEPROM offered by Chartered Semiconductor. The proposed DC/DC charge pump can generate stable output for RFID applications with low power dissipation and high pumping efficiency. The analytical model of the voltage multiplier, the comparison with other charge pumps, the simulation results, and the chip testing results are presented.
Resumo:
This paper presents a novel fully integrated MOS AC to DC charge pump with low power dissipation and stable output for RFID applications. To improve the input sensitivity, we replaced Schottky-diodes in conventional charge pumps with MOS diodes with zero threshold, which has less process defects and is thus more compatible with other circuits. The charge pump in a RFID transponder is implemented in a 0.35um CMOS technology with 0.24 sq mm die size. The analytical model of the charge pump and the simulation results are presented.
Resumo:
This thesis is focused on the design and development of an integrated magnetic (IM) structure for use in high-power high-current power converters employed in renewable energy applications. These applications require low-cost, high efficiency and high-power density magnetic components and the use of IM structures can help achieve this goal. A novel CCTT-core split-winding integrated magnetic (CCTT IM) is presented in this thesis. This IM is optimized for use in high-power dc-dc converters. The CCTT IM design is an evolution of the traditional EE-core integrated magnetic (EE IM). The CCTT IM structure uses a split-winding configuration allowing for the reduction of external leakage inductance, which is a problem for many traditional IM designs, such as the EE IM. Magnetic poles are incorporated to help shape and contain the leakage flux within the core window. These magnetic poles have the added benefit of minimizing the winding power loss due to the airgap fringing flux as they shape the fringing flux away from the split-windings. A CCTT IM reluctance model is developed which uses fringing equations to accurately predict the most probable regions of fringing flux around the pole and winding sections of the device. This helps in the development of a more accurate model as it predicts the dc and ac inductance of the component. A CCTT IM design algorithm is developed which relies heavily on the reluctance model of the CCTT IM. The design algorithm is implemented using the mathematical software tool Mathematica. This algorithm is modular in structure and allows for the quick and easy design and prototyping of the CCTT IM. The algorithm allows for the investigation of the CCTT IM boxed volume with the variation of input current ripple, for different power ranges, magnetic materials and frequencies. A high-power 72 kW CCTT IM prototype is designed and developed for use in an automotive fuelcell-based drivetrain. The CCTT IM design algorithm is initially used to design the component while 3D and 2D finite element analysis (FEA) software is used to optimize the design. Low-cost and low-power loss ferrite 3C92 is used for its construction, and when combined with a low number of turns results in a very efficient design. A paper analysis is undertaken which compares the performance of the high-power CCTT IM design with that of two discrete inductors used in a two-phase (2L) interleaved converter. The 2L option consists of two discrete inductors constructed from high dc-bias material. Both topologies are designed for the same worst-case phase current ripple conditions and this ensures a like-for-like comparison. The comparison indicates that the total magnetic component boxed volume of both converters is similar while the CCTT IM has significantly lower power loss. Experimental results for the 72 kW, (155 V dc, 465 A dc input, 420 V dc output) prototype validate the CCTT IM concept where the component is shown to be 99.7 % efficient. The high-power experimental testing was conducted at General Motors advanced technology center in Torrence, Los Angeles. Calorific testing was used to determine the power loss in the CCTT IM component. Experimental 3.8 kW results and a 3.8 kW prototype compare and contrast the ferrite CCTT IM and high dc-bias 2L concepts over the typical operating range of a fuelcell under like-for-like conditions. The CCTT IM is shown to perform better than the 2L option over the entire power range. An 8 kW ferrite CCTT IM prototype is developed for use in photovoltaic (PV) applications. The CCTT IM is used in a boost pre-regulator as part of the PV power stage. The CCTT IM is compared with an industry standard 2L converter consisting of two discrete ferrite toroidal inductors. The magnetic components are compared for the same worst-case phase current ripple and the experimental testing is conducted over the operation of a PV panel. The prototype CCTT IM allows for a 50 % reduction in total boxed volume and mass in comparison to the baseline 2L option, while showing increased efficiency.
Resumo:
In the mnemonic model of posttraumatic stress disorder (PTSD), the current memory of a negative event, not the event itself, determines symptoms. The model is an alternative to the current event-based etiology of PTSD represented in the Diagnostic and Statistical Manual of Mental Disorders (4th ed., text rev.; American Psychiatric Association, 2000). The model accounts for important and reliable findings that are often inconsistent with the current diagnostic view and that have been neglected by theoretical accounts of the disorder, including the following observations. The diagnosis needs objective information about the trauma and peritraumatic emotions but uses retrospective memory reports that can have substantial biases. Negative events and emotions that do not satisfy the current diagnostic criteria for a trauma can be followed by symptoms that would otherwise qualify for PTSD. Predisposing factors that affect the current memory have large effects on symptoms. The inability-to-recall-an-important-aspect-of-the-trauma symptom does not correlate with other symptoms. Loss or enhancement of the trauma memory affects PTSD symptoms in predictable ways. Special mechanisms that apply only to traumatic memories are not needed, increasing parsimony and the knowledge that can be applied to understanding PTSD.
Resumo:
Behavior, neuropsychology, and neuroimaging suggest that episodic memories are constructed from interactions among the following basic systems: vision, audition, olfaction, other senses, spatial imagery, language, emotion, narrative, motor output, explicit memory, and search and retrieval. Each system has its own well-documented functions, neural substrates, processes, structures, and kinds of schemata. However, the systems have not been considered as interacting components of episodic memory, as is proposed here. Autobiographical memory and oral traditions are used to demonstrate the usefulness of the basic-systems model in accounting for existing data and predicting novel findings, and to argue that the model, or one similar to it, is the only way to understand episodic memory for complex stimuli routinely encountered outside the laboratory.
Resumo:
A model of telescoping is proposed that assumes no systematic errors in dating. Rather, the overestimation of recent occurrences of events is based on the combination of three factors: (1) Retention is greater for recent events; (2) errors in dating, though unbiased, increase linearly with the time since the dated event; and (3) intrusions often occur from events outside the period being asked about, but such intrusions do not come from events that have not yet occurred. In Experiment 1, we found that recall for colloquia fell markedly over a 2-year interval, the magnitude of errors in psychologists' dating of the colloquia increased at a rate of .4 days per day of delay, and the direction of the dating error was toward the middle of the interval. In Experiment 2, the model used the retention function and dating errors from the first study to predict the distribution of the actual dates of colloquia recalled as being within a 5-month period. In Experiment 3, the findings of the first study were replicated with colloquia given by, instead of for, the subjects.
Resumo:
BACKGROUND: A hierarchical taxonomy of organisms is a prerequisite for semantic integration of biodiversity data. Ideally, there would be a single, expansive, authoritative taxonomy that includes extinct and extant taxa, information on synonyms and common names, and monophyletic supraspecific taxa that reflect our current understanding of phylogenetic relationships. DESCRIPTION: As a step towards development of such a resource, and to enable large-scale integration of phenotypic data across vertebrates, we created the Vertebrate Taxonomy Ontology (VTO), a semantically defined taxonomic resource derived from the integration of existing taxonomic compilations, and freely distributed under a Creative Commons Zero (CC0) public domain waiver. The VTO includes both extant and extinct vertebrates and currently contains 106,947 taxonomic terms, 22 taxonomic ranks, 104,736 synonyms, and 162,400 cross-references to other taxonomic resources. Key challenges in constructing the VTO included (1) extracting and merging names, synonyms, and identifiers from heterogeneous sources; (2) structuring hierarchies of terms based on evolutionary relationships and the principle of monophyly; and (3) automating this process as much as possible to accommodate updates in source taxonomies. CONCLUSIONS: The VTO is the primary source of taxonomic information used by the Phenoscape Knowledgebase (http://phenoscape.org/), which integrates genetic and evolutionary phenotype data across both model and non-model vertebrates. The VTO is useful for inferring phenotypic changes on the vertebrate tree of life, which enables queries for candidate genes for various episodes in vertebrate evolution.
Resumo:
This work presents computation analysis of levitated liquid thermal and flow fields with free surface oscillations in AC and DC magnetic fields. The volume electromagnetic force distribution is continuously updated with the shape and position change. The oscillation frequency spectra are analysed for droplets levitation against gravity in AC and DC magnetic fields at various combinations. For larger volume liquid metal confinement and melting the semi-levitation induction skull melting process is simulated with the same numerical model. Applications are aimed at pure electromagnetic material processing techniques and the material properties measurements in uncontaminated conditions.