981 resultados para Cyanobacterial blooms -- Growth


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alterations of freshwater flow regimes and increasing eutrophication lead to alterations in light availability and nutrient loading into adjacent estuaries and coastal areas. Phytoplankton community respond to these changes in many ways. Harmful phytoplankton blooms, for instance, may be a consequence of changes in nutrient supply, as well as the replacement of some phytoplankton species (like diatoms, that contribute for the development of large fish and shellfish populations) by ohers (like cyanobacteria, that may be toxic and represent an undesirable food source for higher trophic levels). Nutrient and light enrichment experiments allow us to understand and predict the effects of eutrophication on the growth of phytoplankton. This is a fundamental tool in water management issues, since it enables the prediction of changes in the phytoplankton community that may be harmful to the whole ecosystem, and the design of mitigation strategies (Zalewski 2000).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of two crop planting methods and of the application of cyanobacterial inoculants on plant growth, yield, water productivity and economics of rice cultivation was evaluated with the help of a split plot designed experiment during the rainy season of 2011 in New Delhi, India. Conventional transplanting and system of rice intensification (SRI) were tested as two different planting methods and seven treatments that considered cyanobacterial inoculants and compost were applied with three repetitions each. Results revealed no significant differences in plant performance and crop yield between both planting methods. However, the application of biofilm based BGA bio-fertiliser + 2/3 N had an overall positive impact on both, plant performance (plant height, number of tillers) and crop yield (number and weight of panicles) as well as on grain and straw yield. Higher net return and a higher benefit-cost ratio were observed in rice fields under SRI planting method, whereas the application of BGA + PGPR + 2/3 N resulted in highest values. Total water productivity and irrigation water productivity was significantly higher under SRI practices (5.95 and 3.67 kg ha^(-1) mm^(-1)) compared to practices of conventional transplanting (3.36 and 2.44), meaning that using SRI method, water saving of about 34 % could be achieved and significantly less water was required to produce one kg of rice. This study could show that a combination of plant growth promoting rhizobacteria (PGPR) in conjunction with BGA and 2/3 dose of mineral N fertiliser can support crop growth performance, crop yields and reduces overall production cost, wherefore this practices should be used in the integrated nutrient management of rice fields in India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Receiving coastal waters and estuaries are among the most nutrient-enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast-growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low- to high-nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high delta 15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species of Microcystis are the most common bloom-forming cyanobacteria in several countries. Despite extensive studies regarding the production of bioactive cyanopeptides in this genus, there are limited data on isolated strains from Brazil. Three Microcystis sp. strains were isolated from the Salto Grande Reservoir (LTPNA01, 08 and 09) and investigated for the presence of mcy genes, microcystins and other cyanopeptides. Microcystin and microginin production was confirmed in two isolates using high-resolution tandem mass spectrometry after electrospray ionization (ESI-Q-TOF), and the structures of two new microginin congeners were proposed (MG756 Ahda-Val-Leu-Hty-Tyr and MG770 MeAhda-Val-Leu-Hty-Tyr). The biosynthesis profile of the identified cyanopeptides was evaluated at different growth phases via a newly developed HPLC-UV method. Results demonstrated no substantial differences in the production of microcystins and microginins after data normalization to cell quota, suggesting a constitutive biosynthesis. This study represents the first confirmed co-production of microginins and microcystins in Brazilian strains of Microcystis sp. and highlights the potential of Brazilian cyanobacteria as a source of natural compounds with pharmaceutical interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sphaerospermopsis torques-reginae (Komarek) Werner, Laughinghouse IV, Fiore & Sant'Anna comb. nov. was originally described as Anabaena torques-reginae Komarek from planktonic populations of Cuban eutrophic environments, characterized by twisted trichomes with spherical akinetes adjacent to the heterocytes. Recently, using molecular analyses, all planktonic Anabaena Bory ex Bornet & Flahault morphospecies were transferred into the genus Dolichospermum (Ralfs ex Bornet & Flahault) Wacklin el al., including Dolichospermum torques-reginae (Komarek) Wacklin et al. However, by a polyphasic characterization of strains of Anabaena reniformis Lemmermann and Aphanizomenon aphanizomenoides (Forti) Horecka & Komarek (=Anabaena aphanizomenoides Forti), these planktonic species were reclassified into Sphaerospermopsis Zapomelova et al. Our study's main objective was to characterize morphologically and molecularly cyanobacterial populations identified as Dolichospermum torques-reginae, observed in different aquatic ecosystems in South America. The 16S rRNA gene of two Dolichospermum torques-reginae strains (ITEP-024 and ITEP-026) was sequenced and phylogenetically analyzed for the first time. The morphological and phylogenetic analyses demonstrated the affiliation of the studied populations with the genus Sphaerospermopsis and, consequently, were denominated as Sphaerospermopsis torques-reginae. Furthermore, geographic distribution, ecology, and toxicity of the species are discussed. It was observed in different aquatic environments, natural and artificial, tropical and subtropical in Brazil, temperate in Argentina, and tropical in Colombia, suggesting a wide distribution in South America. It normally occurred in dense freshwater blooms, although it was also found in water with low salinity. Sphaerospermopsis torques-reginae toxic blooms have been reported in tropical water bodies in northeastern Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have examined the relationship between Fe and blooms of the toxic dinoflagellate Alexandrium tamarense (Balech) (formerly Gonyaulax tamarensis var. excavata (Lebour)) using a chemical method that estimates the biological availability of Fe in seawater. The Fe requirement for optimal growth of A. tamarense in sequential batch culture (ca 3 nM 'available' Fe) was compared with Fe concentrations in waters of the Gulf of Maine, USA. Results indicated that Fe did not limit growth of the organism in nearshore coastal waters or over Georges Bank, but that the organism may have been Fe-limited in Gulf of Maine basin waters. The distribution of A. tamarense in the Gulf of Maine is consistent with these Fe data. Red tide outbreaks in the nearshore environment did not correlate with changes in total Fe or the estimated Fe availability. Although Fe did not appear to trigger outbreaks of A. tamarense in Maine coastal waters, the findings are consistent with suggestions that pulsed inputs of Fe may be important for the development of toxic dinoflagellate blooms in regions (e.g. Florida) where outbreaks are initiated offshore.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Harmful algal blooms are mainly caused by marine dinoflagellates and are known to produce potent toxins that may affect the ecosystem, human activities and health. Such events have increased in frequency and intensity worldwide in the past decades. Numerous processes involved in Global Change are amplified in the Arctic, but little is known about species specific responses of arctic dinoflagellates. The aim of this work was to perform an exhaustive morphological, phylogenetical and toxinological characterization of Greenland Protoceratium reticulatum and, in addition, to test the effect of temperature on growth and production of bioactive secondary metabolites. Seven clonal isolates, the first isolates of P. reticulatum available from arctic waters, were phylogenetically characterized by analysis of the LSU rDNA. Six isolates were further characterized morphologically and were shown to produce both yessotoxins (YTX) and lytic compounds, representing the first report of allelochemical activity in P. reticulatum. As shown for one of the isolates, growth was strongly affected by temperature with a maximum growth rate at 15 °C, a significant but slow growth at 1 °C, and cell death at 25 °C, suggesting an adaptation of P. reticulatum to temperate waters. Temperature had no major effect on total YTX cell quota or lytic activity but both were affected by the growth phase with a significant increase at stationary phase. A comparison of six isolates at a fixed temperature of 10 °C showed high intraspecific variability for all three physiological parameters tested. Growth rate varied from 0.06 to 0.19 per day, and total YTX concentration ranged from 0.3 to 15.0 pg YTX/cell and from 0.5 to 31.0 pg YTX/cell at exponential and stationary phase, respectively. All six isolates performed lytic activity; however, for two isolates lytic activity was only detectable at higher cell densities in stationary phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO2 availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24 °C, and present day and next century applied atmospheric pCO2, respectively. In both species, individual strains were affected in different ways by increased temperature and pCO2. The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO2 on growth-slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO2. Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO2 supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO2 conditions, with potentially severe consequences for the coastal ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coccolithophores are unicellular phytoplankton that produce calcium carbonate coccoliths as an exoskeleton. Emiliania huxleyi, the most abundant coccolithophore in the world's ocean, plays a major role in the global carbon cycle by regulating the exchange of CO2 across the ocean-atmosphere interface through photosynthesis and calcium carbonate precipitation. As CO2 concentration is rising in the atmosphere, the ocean is acidifying and ammonium (NH4) concentration of future ocean water is expected to rise. The latter is attributed to increasing anthropogenic nitrogen (N) deposition, increasing rates of cyanobacterial N2 fixation due to warmer and more stratified oceans, and decreased rates of nitrification due to ocean acidification. Thus future global climate change will cause oceanic phytoplankton to experience changes in multiple environmental parameters including CO2, pH, temperature and nitrogen source. This study reports on the combined effect of elevated pCO2 and increased NH4 to nitrate (NO3) ratio (NH4/NO3) on E. huxleyi, maintained in continuous cultures for more than 200 generations under two pCO2 levels and two different N sources. Here we show that NH4 assimilation under N-replete conditions depresses calcification at both low and high pCO2, alters coccolith morphology, and increases primary production. We observed that N source and pCO2 synergistically drive growth rates, cell size and the ratio of inorganic to organic carbon. These responses to N source suggest that, compared to increasing CO2 alone, a greater disruption of the organic carbon pump could be expected in response to the combined effect of increased NH4/NO3 ratio and CO2 level in the future acidified ocean. Additional experiments conducted under lower nutrient conditions are needed prior to extrapolating our findings to the global oceans. Nonetheless, our results emphasize the need to assess combined effects of multiple environmental parameters on phytoplankton biology in order to develop accurate predictions of phytoplankton responses to ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of coastal acidification on the growth and toxicity of the saxitoxin-producing dinoflagellate Alexandrium fundyense were examined in culture and ecosystem studies. In culture experiments, Alexandrium strains isolated from Northport Bay, New York, and the Bay of Fundy, Canada, grew significantly faster (16-190%; p < 0.05) when exposed to elevated levels of PCO2 ( 90-190 Pa=900-1900 µatm) compared to lower levels ( 40 Pa=400 µatm). Exposure to higher levels of PCO2 also resulted in significant increases (71-81%) in total cellular toxicity (fg saxitoxin equivalents/cell) in the Northport Bay strain, while no changes in toxicity were detected in the Bay of Fundy strain. The positive relationship between PCO2 enrichment and elevated growth was reproducible in natural populations from New York waters. Alexandrium densities were significantly and consistently enhanced when natural populations were incubated at 150 Pa PCO2 compared to 39 Pa. During natural Alexandrium blooms in Northport Bay, PCO2 concentrations increased over the course of a bloom to more than 170 Pa and were highest in regions with the greatest Alexandrium abundances, suggesting Alexandrium may further exacerbate acidification and/or be especially adapted to these acidi-fied conditions. The co-occurrence of Alexandrium blooms and elevated PCO2 represents a previously unrecognized, compounding environmental threat to coastal ecosystems. The ability of elevated PCO2 to enhance the growth and toxicity of Alexandrium indicates that acidification promoted by eutrophication or climate change can intensify these, and perhaps other, harmful algal blooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon physiology of a genetically identified Ulva rigida was investigated under different CO2(aq) and light levels. The study was designed to answer whether (1) light or exogenous inorganic carbon (Ci) pool is driving growth; and (2) elevated CO2(aq) concentration under ocean acidification (OA) will downregulate CAext-mediated inline image dehydration and alter the stable carbon isotope (delta13C) signatures toward more CO2 use to support higher growth rate. At pHT 9.0 where CO2(aq) is <1 ?mol/L, inhibition of the known inline image use mechanisms, that is, direct inline image uptake through the AE port and CAext-mediated inline image dehydration decreased net photosynthesis (NPS) by only 56-83%, leaving the carbon uptake mechanism for the remaining 17-44% of the NPS unaccounted. An in silico search for carbon-concentrating mechanism elements in expressed sequence tag libraries of Ulva found putative light-dependent inline image transporters to which the remaining NPS can be attributed. The shift in delta13C signatures from -22 per mil toward -10 per mil under saturating light but not under elevated CO2(aq) suggest preference and substantial inline image use to support photosynthesis and growth. U. rigida is Ci saturated, and growth was primarily controlled by light. Therefore, increased levels of CO2(aq) predicted for the future will not, in isolation, stimulate Ulva blooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microzooplankton (the 20 to 200 µm size class of zooplankton) is recognised as an important part of marine pelagic ecosystems. In terms of biomass and abundance pelagic ciliates are one of the important groups of organism in microzooplankton. However, their rates - grazing and growth - , feeding behaviour and prey preferences are poorly known and understood. A set of data was assembled in order to derive a better understanding of pelagic ciliates rates, in response to parameters such as prey concentration, prey type (size and species), temperature and their own size. With these objectives, literature was searched for laboratory experiments with information on one or more of these parameters effect studied. The criteria for selection and inclusion in the database included: (i) controlled laboratory experiment with a known ciliates feeding on a known prey; (ii) presence of ancillary information about experimental conditions, used organisms - cell volume, cell dimensions, and carbon content. Rates and ancillary information were measured in units that meet the experimenter need, creating a need to harmonize the data units after collection. In addition different units can link to different mechanisms (carbon to nutritive quality of the prey, volume to size limits). As a result, grazing rates are thus available as pg C/(ciliate*h), µm**3/(ciliate*h) and prey cell/(ciliate*h); clearance rate was calculated if not given and growth rate is expressed as the growth rate per day.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 2002, the usually uncommon endemic filamentous brown alga Hincksia sordida (Harvey) Silva (Ectocarpales, Phaeophyta) has formed nuisance blooms annually during spring/early summer at Main Beach, Noosa on the subtropical east Australian coast. The Hincksia bloom coincides with the normally intensive recreational use of the popular bathing beach by the local population and tourists. The alga forms dense accumulations in the surf zone at Main Beach, giving the seawater a distinct brown coloration and deterring swimmers from entering the water. Decomposing algae stranded by receding tides emit a nauseating sulphurous stench which hangs over the beach. The stranded algal biomass is removed from the beach by bulldozers. During blooms, the usually crowded Main Beach is deserted, bathers preferring to use the many unaffected beaches on the Sunshine Coast to the south of Main Beach. The bloom worsens with north-easterly winds and is cleared from Noosa by south easterly winds, observations which have prompted the untenable proposal by local authorities that the bloom is forming offshore of Fraser Island in the South Pacific Ocean. The Noosa River estuarine system/Laguna Bay is the more probable source of the bloom and the nutrient inputs into this system must be substantial to generate the high bloom biomass. Current mitigation procedures of removing the blooming alga off the beach with bulldozers treat the symptom, not the cause and are proving ineffective. Environmental management must be based on science and the Noosa bloom would benefit greatly from the accurate ecological data on which to base management options. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trophodynamics of blooms of the toxic marine cyanobacterium Lyngkya majuscula were investigated to determine dietary specificity in two putative grazers: the opisthobranch molluscs, Stylocheilus striatus and Bursatella leachii. S. striatus is associated with L. majuscula blooms and is known to sequester L. majuscula metabolites. The dietary specificity and toxicodynamics of B. leachii in relation to L. majuscula is less well documented. In this study we found diet history had no significant effect upon dietary selectivity of S. striatus when offered a range of plant species. However, L. majuscula chemotype may alter S. striatus' selectivity for this cyanobacterium. Daily biomass increases between small and large size groups of both species were recorded in no-choice consumption trials using L. majuscula. Both S. striatus and B. leachii preferentially consumed L. majuscula containing lyngbyatoxin-a. Increase in mass over a 10-day period in B. leachii (915%) was significantly greater than S. striatus (150%), yet S. striatus consumed greater quantities of L. majuscula (g day(-1)) and thus had a lower conversion efficiency (0.038) than B. leachii (0.081) based on sea hare weight per gram of L. majuscula consumed day(-1). Our findings suggest that growth rates and conversion efficiencies may be influenced by sea hare maximum growth potential, acquisition of secondary metabolites or diet type. (C) 2005 Elsevier B.V. All rights reserved.