860 resultados para Critical point theory
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We prove that a 'positive probability' subset of the boundary of '{uniformly expanding circle transformations}' consists of Kupka-Smale maps. More precisely, we construct an open class of two-parameter families of circle maps (f(alpha,theta))(alpha,theta) such that, for a positive Lebesgue measure subset of values of alpha, the family (f(alpha,theta))(theta) crosses the boundary of the uniformly expanding domain at a map for which all periodic points are hyperbolic (expanding) and no critical point is pre-periodic. Furthermore, these maps admit an absolutely continuous invariant measure. We also provide information about the geometry of the boundary of the set of hyperbolic maps.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The associationist account for early word learning is based on the co-occurrence between referents and words. Here we introduce a noisy cross-situational learning scenario in which the referent of the uttered word is eliminated from the context with probability gamma, thus modeling the noise produced by out-of-context words. We examine the performance of a simple associative learning algorithm and find a critical value of the noise parameter gamma(c) above which learning is impossible. We use finite-size scaling to show that the sharpness of the transition persists across a region of order tau(-1/2) about gamma(c), where tau is the number of learning trials, as well as to obtain the learning error (scaling function) in the critical region. In addition, we show that the distribution of durations of periods when the learning error is zero is a power law with exponent -3/2 at the critical point. Copyright (C) EPLA, 2012
Resumo:
Up to now the raise-and-peel model was the single known example of a one-dimensional stochastic process where one can observe conformal invariance. The model has one parameter. Depending on its value one has a gapped phase, a critical point where one has conformal invariance, and a gapless phase with changing values of the dynamical critical exponent z. In this model, adsorption is local but desorption is not. The raise-and-strip model presented here, in which desorption is also nonlocal, has the same phase diagram. The critical exponents are different as are some physical properties of the model. Our study suggests the possible existence of a whole class of stochastic models in which one can observe conformal invariance.
Resumo:
We present a stochastic approach to nonequilibrium thermodynamics based on the expression of the entropy production rate advanced by Schnakenberg for systems described by a master equation. From the microscopic Schnakenberg expression we get the macroscopic bilinear form for the entropy production rate in terms of fluxes and forces. This is performed by placing the system in contact with two reservoirs with distinct sets of thermodynamic fields and by assuming an appropriate form for the transition rate. The approach is applied to an interacting lattice gas model in contact with two heat and particle reservoirs. On a square lattice, a continuous symmetry breaking phase transition takes place such that at the nonequilibrium ordered phase a heat flow sets in even when the temperatures of the reservoirs are the same. The entropy production rate is found to have a singularity at the critical point of the linear-logarithm type.
Resumo:
[EN] The purpose of this paper is to present some fixed point theorems for Meir-Keeler contractions in a complete metric space endowed with a partial order. MSC: 47H10.
Resumo:
[EN] The purpose of this paper is to provide sufficient conditions for the existence of a unique best proximity point for Geraghty-contractions.Our paper provides an extension of a result due to Geraghty (Proc. Am. Math. Soc. 40:604-608, 1973).
Resumo:
Il primo capitolo della tesi verte sull’ultimo anno di vita del Partito d’Azione, sulle modalità di partecipazione di Lombardi allo scontro elettorale del 1948 nelle liste del Fronte democratico popolare, e sul breve periodo di direzione ‘centrista’ del Psi a cavallo tra il 1948 e il 1949, quando Lombardi, appena entratovi, fu magna pars nel gruppo dirigente del partito. Il secondo capitolo abbraccia il periodo in cui Lombardi agì all’interno del Psi ‘morandiano’, o frontista: si è cercato di dare ragione sia dell’inserimento di Lombardi nelle logiche del frontismo socialista, sia della peculiarità di quell’inserimento negli ambiti privilegiati della politica economica e della politica estera. Oggetto del terzo capitolo è il ruolo giocato da Lombardi nella definizione delle linee guida dell’autonomismo socialista, un ruolo fattosi via via più pregnante a partire dal 1956, che ebbe la sua massima consacrazione col XXXIV Congresso del Psi, celebrato a Milano nel 1961: centrale in questo periodo la riflessione lombardiana sulle «riforme di struttura», un argomento che ci si è sforzati di inquadrare storicamente, sfuggendo dai luoghi comuni storiografici di cui spesso – con lodevoli eccezioni – è caduto vittima. Tali «riforme di struttura» Lombardi avrebbe voluto alla base dei governi di centro-sinistra. La tesi si chiude con un ultimo capitolo dedicato ad illustrare l’apporto di Lombardi al quarto Governo Fanfani e al primo Governo Moro, il ruolo da lui giocato nella loro nascita e il suo progressivo allontanamento da quell’esperimento che era stato, in gran parte, sua creatura.
Resumo:
When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. Monte Carlo simulations were performed to study the phase diagram of such rod-polymer mixtures. The colloidal rods were modelled as hard spherocylinders; the polymers were described as spheres of the same diameter as the rods. The polymers may overlap with no energy cost, while overlap of polymers and rods is forbidden. In this thesis the emphasis was on the depletion effects caused by the addition of spheres on the isotropic phase of rod-like particles. Although most of the present experimental studies consider systems close to or beyond the isotropic-nematic transition, the isotropic phase with depletion interactions turns out to be a not less interesting topic. First, the percolation problem was studied in canonical simulations of a system of hard rods and soft spheres, where the amount of depletant was kept low to prevent phase separation of the mixture. The lowering of the percolation threshold seen in experiment is confirmed to be due to the depletion interactions. The local changes in the structure of the fluid of rods, which were measured in the simulations, indicated that the depletion forces enhance local alignment and aggregation of the rods. Then, the phase diagram of isotropic-isotropic demixing of short spherocylinders was calculated using grand canonical ensemble simulations with successive umbrella sampling. Finite size scaling analysis allowed to estimate the location of the critical point. Also, estimates for the interfacial tension between the coexisting isotropic phases and analyses of its power-law behaviour on approach of the critical point are presented. The obtained phase diagram was compared to the predictions of the free volume theory. After an analysis of the bulk, the phase behaviour in confinement was studied. The critical point of gas-liquid demixing is shifted to higher concentrations of rods and smaller concentrations of spheres due to the formation of an orientationally ordered surface film. If the separation between the walls becomes very small, the critical point is shifted back to smaller concentrations of rods because the surface film breaks up. A method to calculate the contact angle of the liquid-gas interface with the wall is introduced and the wetting behaviour on the approach to the critical point is analysed.
Resumo:
Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by nowrnentered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbativelyrn$\mathcal{O}(a)$-improved Wilson fermions to produce reliable results in thernchiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. Thisrnthesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phaserntransition in the chiral limit of two-flavour QCD.rnrnThe electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer $q^2$, where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to $q^2=0$ which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike $q^2$-value available so far and $q^2=0$, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge radius are used to test chiral perturbation theory ($\chi$PT) and are thereby extrapolated to the physical point and the continuum. The final result in units of the hadronic radius $r_0$ is rn$$ \left\langle r_\pi^2 \right\rangle^{\rm phys}/r_0^2 = 1.87 \: \left(^{+12}_{-10}\right)\left(^{+\:4}_{-15}\right) \quad \textnormal{or} \quad \left\langle r_\pi^2 \right\rangle^{\rm phys} = 0.473 \: \left(^{+30}_{-26}\right)\left(^{+10}_{-38}\right)(10) \: \textnormal{fm} \;, $$rn which agrees well with the results from other measurements in LQCD and experiment. Note, that this is the first continuum extrapolated result for the charge radius from LQCD which has been extracted from measurements of the form factor in the region of small $q^2$.rnrnThe order of the phase transition in the chiral limit of two-flavour QCD and the associated transition temperature are the last unkown features of the phase diagram at zero chemical potential. The two possible scenarios are a second order transition in the $O(4)$-universality class or a first order transition. Since direct simulations in the chiral limit are not possible the transition can only be investigated by simulating at non-zero quark mass with a subsequent chiral extrapolation, guided by the universal scaling in the vicinity of the critical point. The thesis presents the setup and first results from a study on this topic. The study provides the ideal platform to test the potential and limits of todays simulation algorithms at finite temperature. The results from a first scan at a constant zero-temperature pion mass of about 290~MeV are promising, and it appears that simulations down to physical quark masses are feasible. Of particular relevance for the order of the chiral transition is the strength of the anomalous breaking of the $U_A(1)$ symmetry at the transition point. It can be studied by looking at the degeneracies of the correlation functions in scalar and pseudoscalar channels. For the temperature scan reported in this thesis the breaking is still pronounced in the transition region and the symmetry becomes effectively restored only above $1.16\:T_C$. The thesis also provides an extensive outline of research perspectives and includes a generalisation of the standard multi-histogram method to explicitly $\beta$-dependent fermion actions.
Resumo:
We investigate the SU(3)-invariant sector of the one-parameter family of SO(8) gauged maximal supergravities that has been recently discovered. To this end, we construct the N=2 truncation of this theory and analyse its full vacuum structure. The number of critical point is doubled and includes new N=0 and N=1 branches. We numerically exhibit the parameter dependence of the location and cosmological constant of all extrema. Moreover, we provide their analytic expressions for cases of special interest. Finally, while the mass spectra are found to be parameter independent in most cases, we show that the novel non-supersymmetric branch with SU(3) invariance provides the first counterexample to this.
Resumo:
We provide the dictionary between four-dimensional gauged supergravity and type II compactifications on T6 with metric and gauge fluxes in the absence of supersymmetry breaking sources, such as branes and orientifold planes. Secondly, we prove that there is a unique isotropic compactification allowing for critical points. It corresponds to a type IIA background given by a product of two 3-tori with SO(3) twists and results in a unique theory (gauging) with a non-semisimple gauge algebra. Besides the known four AdS solutions surviving the orientifold projection to N = 4 induced by O6-planes, this theory contains a novel AdS solution that requires non-trivial orientifold-odd fluxes, hence being a genuine critical point of the N = 8 theory.
Resumo:
Antegrade nailing of proximal humeral fractures using a straight nail can damage the bony insertion of the supraspinatus tendon and may lead to varus failure of the construct. In order to establish the ideal anatomical landmarks for insertion of the nail and their clinical relevance we analysed CT scans of bilateral proximal humeri in 200 patients (mean age 45.1 years (sd 19.6; 18 to 97) without humeral fractures. The entry point of the nail was defined by the point of intersection of the anteroposterior and lateral vertical axes with the cortex of the humeral head. The critical point was defined as the intersection of the sagittal axis with the medial limit of the insertion of the supraspinatus tendon on the greater tuberosity. The region of interest, i.e. the biggest entry hole that would not encroach on the insertion of the supraspinatus tendon, was calculated setting a 3 mm minimal distance from the critical point. This identified that 38.5% of the humeral heads were categorised as 'critical types', due to morphology in which the predicted offset of the entry point would encroach on the insertion of the supraspinatus tendon that may damage the tendon and reduce the stability of fixation. We therefore emphasise the need for 'fastidious' pre-operative planning to minimise this risk.