422 resultados para Creatine.
Resumo:
Purpose: We investigated if oral ingestion of ibuprofen influenced leucocyte recruitment and infiltration following an acute bout of traditional resistance exercise Methods: Sixteen male subjects were divided into two groups that received the maximum over-the-counter dose of ibuprofen (1200mg d−1) or a similarly administered placebo following lower body resistance exercise. Muscle biopsies were taken from m.vastus lateralis and blood serum samples were obtained before and immediately after exercise, and at 3 and 24 h after exercise. Muscle cross-sections were stained with antibodies against neutrophils (CD66b and MPO) and macrophages (CD68). Muscle damage was assessed via creatine kinase and myoglobin in blood serum samples, and muscle soreness was rated on a ten-point pain scale. Results: The resistance exercise protocol stimulated a significant increase in the number of CD66b+ and MPO+ cells when measured 3 h post exercise. Serum creatine kinase, myoglobin and subjective muscle soreness all increased post-exercise. Muscle leucocyte infiltration, creatine kinase, myoglobin and subjective muscle soreness were unaffected by ibuprofen treatment when compared to placebo. There was also no association between increases in inflammatory leucocytes and any other marker of cellular muscle damage. Conclusion: Ibuprofen administration had no effect on the accumulation of neutrophils, markers of muscle damage or muscle soreness during the first 24 h of post-exercise muscle recovery.
Resumo:
Background. Hyperlipidemia is a common concern in patients with heterozygous familial hypercholesterolemia (HeFH) and in cardiac transplant recipients. In both groups, an elevated serum LDL cholesterol level accelerates the development of atherosclerotic vascular disease and increases the rates of cardiovascular morbidity and mortality. The purpose of this study is to assess the pharmacokinetics, efficacy, and safety of cholesterol-lowering pravastatin in children with HeFH and in pediatric cardiac transplant recipients receiving immunosuppressive medication. Patients and Methods. The pharmacokinetics of pravastatin was studied in 20 HeFH children and in 19 pediatric cardiac transplant recipients receiving triple immunosuppression. The patients ingested a single 10-mg dose of pravastatin, and plasma pravastatin concentrations were measured up to 10/24 hours. The efficacy and safety of pravastatin (maximum dose 10 to 60 mg/day and 10 mg/day) up to one to two years were studied in 30 patients with HeFH and in 19 cardiac transplant recipients, respectively. In a subgroup of 16 HeFH children, serum non-cholesterol sterol ratios (102 x mmol/mol of cholesterol), surrogate estimates of cholesterol absorption (cholestanol, campesterol, sitosterol), and synthesis (desmosterol and lathosterol) were studied at study baseline (on plant stanol esters) and during combination with pravastatin and plant stanol esters. In the transplant recipients, the lipoprotein levels and their mass compositions were analyzed before and after one year of pravastatin use, and then compared to values measured from 21 healthy pediatric controls. The transplant recipients were grouped into patients with transplant coronary artery disease (TxCAD) and patients without TxCAD, based on annual angiography evaluations before pravastatin. Results. In the cardiac transplant recipients, the mean area under the plasma concentration-time curve of pravastatin [AUC(0-10)], 264.1 * 192.4 ng.h/mL, was nearly ten-fold higher than in the HeFH children (26.6 * 17.0 ng.h/mL). By 2, 4, 6, 12 and 24 months of treatment, the LDL cholesterol levels in the HeFH children had respectively decreased by 25%, 26%, 29%, 33%, and 32%. In the HeFH group, pravastatin treatment increased the markers of cholesterol absorption and decreased those of synthesis. High ratios of cholestanol to cholesterol were associated with the poor cholesterol-lowering efficacy of pravastatin. In cardiac transplant recipients, pravastatin 10 mg/day lowered the LDL cholesterol by approximately 19%. Compared with the patients without TxCAD, patients with TxCAD had significantly lower HDL cholesterol concentrations and higher apoB-100/apoA-I ratios at baseline (1.0 ± 0.3 mmol/L vs. 1.4 ± 0.3 mmol/L, P = 0.031; and 0.7 ± 0.2 vs. 0.5 ± 0.1, P = 0.034) and after one year of pravastatin use (1.0 ± 0.3 mmol/L vs. 1.4 ± 0.3 mmol/L, P = 0.013; and 0.6 ± 0.2 vs. 0.4 ± 0.1, P = 0.005). Compared with healthy controls, the transplant recipients exhibited elevated serum triglycerides at baseline (median 1.3 [range 0.6-3.2] mmol/L vs. 0.7 [0.3-2.4] mmol/L, P=0.0002), which negatively correlated with their HDL cholesterol concentration (r = -0.523, P = 0.022). Recipients also exhibited higher apoB-100/apoA1 ratios (0.6 ± 0.2 vs. 0.4 ± 0.1, P = 0.005). In addition, elevated triglyceride levels were still observed after one year of pravastatin use (1.3 [0.5-3.5] mmol/L vs. 0.7 [0.3-2.4] mmol/L, P = 0.0004). Clinically significant elevations in alanine aminotransferase, creatine kinase, or creatinine ocurred in neither group. Conclusions. Immunosuppressive medication considerably increased the plasma pravastatin concentrations. In both patient groups, pravastatin treatment was moderately effective, safe, and well tolerated. In the HeFH group, high baseline cholesterol absorption seemed to predispose patients to insufficient cholesterol-lowering efficacy of pravastatin. In the cardiac transplant recipients, low HDL cholesterol and a high apoB-100/apoA-I ratio were associated with development of TxCAD. Even though pravastatin in the transplant recipients effectively lowered serum total and LDL cholesterol concentrations, it failed to normalize their elevated triglyceride levels and, in some patients, to prevent the progression of TxCAD.
Resumo:
The metabolic syndrome and type 1 diabetes are associated with brain alterations such as cognitive decline brain infarctions, atrophy, and white matter lesions. Despite the importance of these alterations, their pathomechanism is still poorly understood. This study was conducted to investigate brain glucose and metabolites in healthy individuals with an increased cardiovascular risk and in patients with type 1 diabetes in order to discover more information on the nature of the known brain alterations. We studied 43 20- to 45-year-old men. Study I compared two groups of non-diabetic men, one with an accumulation of cardiovascular risk factors and another without. Studies II to IV compared men with type 1 diabetes (duration of diabetes 6.7 ± 5.2 years, no microvascular complications) with non-diabetic men. Brain glucose, N-acetylaspartate (NAA), total creatine (tCr), choline, and myo-inositol (mI) were quantified with proton magnetic resonance spectroscopy in three cerebral regions: frontal cortex, frontal white matter, thalamus, and in cerebellar white matter. Data collection was performed for all participants during fasting glycemia and in a subgroup (Studies III and IV), also during a hyperglycemic clamp that increased plasma glucose concentration by 12 mmol/l. In non-diabetic men, the brain glucose concentration correlated linearly with plasma glucose concentration. The cardiovascular risk group (Study I) had a 13% higher plasma glucose concentration than the control group, but no difference in thalamic glucose content. The risk group thus had lower thalamic glucose content than expected. They also had 17% increased tCr (marker of oxidative metabolism). In the control group, tCr correlated with thalamic glucose content, but in the risk group, tCr correlated instead with fasting plasma glucose and 2-h plasma glucose concentration in the oral glucose tolerance test. Risk factors of the metabolic syndrome, most importantly insulin resistance, may thus influence brain metabolism. During fasting glycemia (Study II), regional variation in the cerebral glucose levels appeared in the non-diabetic subjects but not in those with diabetes. In diabetic patients, excess glucose had accumulated predominantly in the white matter where the metabolite alterations were also the most pronounced. Compared to the controls values, the white matter NAA (marker of neuronal metabolism) was 6% lower and mI (glia cell marker) 20% higher. Hyperglycemia is therefore a potent risk factor for diabetic brain disease and the metabolic brain alterations may appear even before any peripheral microvascular complications are detectable. During acute hyperglycemia (Study III), the increase in cerebral glucose content in the patients with type 1 diabetes was, dependent on brain region, between 1.1 and 2.0 mmol/l. An every-day hyperglycemic episode in a diabetic patient may therefore as much as double brain glucose concentration. While chronic hyperglycemia had led to accumulation of glucose in the white matter, acute hyperglycemia burdened predominantly the gray matter. Acute hyperglycemia also revealed that chronic fluctuation in blood glucose may be associated with alterations in glucose uptake or in metabolism in the thalamus. The cerebellar white matter appeared very differently from the cerebral (Study IV). In the non-diabetic men it contained twice as much glucose as the cerebrum. Diabetes had altered neither its glucose content nor the brain metabolites. The cerebellum seems therefore more resistant to the effects of hyperglycemia than is the cerebrum.
Resumo:
Boron neutron capture therapy (BNCT) is a radiotherapy that has mainly been used to treat malignant brain tumours, melanomas, and head and neck cancer. In BNCT, the patient receives an intravenous infusion of a 10B-carrier, which accumulates in the tumour area. The tumour is irradiated with epithermal or thermal neutrons, which result in a boron neutron capture reaction that generates heavy particles to damage tumour cells. In Finland, boronophenylalanine fructose (BPA-F) is used as the 10B-carrier. Currently, the drifting of boron from blood to tumour as well as the spatial and temporal accumulation of boron in the brain, are not precisely known. Proton magnetic resonance spectroscopy (1H MRS) could be used for selective BPA-F detection and quantification as aromatic protons of BPA resonate in the spectrum region, which is clear of brain metabolite signals. This study, which included both phantom and in vivo studies, examined the validity of 1H MRS as a tool for BPA detection. In the phantom study, BPA quantification was studied at 1.5 and 3.0 T with single voxel 1H MRS, and at 1.5 T with magnetic resonance imaging (MRSI). The detection limit of BPA was determined in phantom conditions at 1.5 T and 3.0 T using single voxel 1H MRS, and at 1.5 T using MRSI. In phantom conditions, BPA quantification accuracy of ± 5% and ± 15% were achieved with single voxel MRS using external or internal (internal water signal) concentration references, respectively. For MRSI, a quantification accuracy of <5% was obtained using an internal concentration reference (creatine). The detection limits of BPA in phantom conditions for the PRESS sequence were 0.7 (3.0 T) and 1.4 mM (1.5 T) mM with 20 × 20 × 20 mm3 single voxel MRS, and 1.0 mM with acquisition-weighted MRSI (nominal voxel volume 10(RL) × 10(AP) × 7.5(SI) mm3), respectively. In the in vivo study, an MRSI or single voxel MRS or both was performed for ten patients (patients 1-10) on the day of BNCT. Three patients had glioblastoma multiforme (GBM), and five patients had a recurrent or progressing GBM or anaplastic astrocytoma gradus III, and two patients had head and neck cancer. For nine patients (patients 1-9), MRS/MRSI was performed 70-140 min after the second irradiation field, and for one patient (patient 10), the MRSI study began 11 min before the end of the BPA-F infusion and ended 6 min after the end of the infusion. In comparison, single voxel MRS was performed before BNCT, for two patients (patients 3 and 9), and for one patient (patient 9), MRSI was performed one month after treatment. For one patient (patient 10), MRSI was performed four days before infusion. Signals from the tumour spectrum aromatic region were detected on the day of BNCT in three patients, indicating that in favourable cases, it is possible to detect BPA in vivo in the patient’s brain after BNCT treatment or at the end of BPA-F infusion. However, because the shape and position of the detected signals did not exactly match the BPA spectrum detected in the in vitro conditions, assignment of BPA is difficult. The opportunity to perform MRS immediately after the end of BPA-F infusion for more patients is necessary to evaluate the suitability of 1H MRS for BPA detection or quantification for treatment planning purposes. However, it could be possible to use MRSI as criteria in selecting patients for BNCT.
Resumo:
A major myonecrotic zinc containing metalloprotease `malabarin' with thrombin like activity was purified by the combination of gel permeation and anion exchange chromatography from T. malabaricus snake venom. MALDI-TOF analysis of malabarin indicated a molecular mass of 45.76 kDa and its N-terminal sequence was found to be Ile-Ile-Leu-Pro(Leu)-Ile-Gly-Val-Ile-Leu(Glu)-Thr-Thr. Atomic absorption spectral analysis of malabarin raveled the association of zinc metal ion. Malabarin is not lethal when injected i.p. or i.m. but causes extensive hemorrhage and degradation of muscle tissue within 24 hours. Sections of muscle tissue under light microscope revealed hemorrhage and congestion of blood vessel during initial stage followed by extensive muscle fiber necrosis with elevated levels of serum creatine kinase and lactate dehydrogenase activity. Malabarin also exhibited strong procoagulant action and its procoagulant action is due to thrombin like activity; it hydrolyzes fibrinogen to form fibrin clot. The enzyme preferentially hydrolyzes A alpha followed by B beta subunits of fibrinogen from the N-terminal region and the released products were identified as fibrinopeptide A and fibrinopeptide B by MALDI. The myonecrotic, fibrinogenolytic and subsequent procoagulant activities of malabarin was neutralized by specific metalloprotease inhibitors such as EDTA, EGTA and 1, 10-phenanthroline but not by PMSF a specific serine protease inhibitor. Since there is no antivenom available to neutralize local toxicity caused by T. malabaricus snakebite, EDTA chelation therapy may have more clinical relevance over conventional treatment.
Resumo:
11 p.
Resumo:
Background: Completing a marathon is one of the most challenging sports activities, yet the source of running fatigue during this event is not completely understood. The aim of this investigation was to determine the cause(s) of running fatigue during a marathon in warm weather. Methodology/Principal Findings: We recruited 40 amateur runners (34 men and 6 women) for the study. Before the race, body core temperature, body mass, leg muscle power output during a countermovement jump, and blood samples were obtained. During the marathon (27 uC; 27% relative humidity) running fatigue was measured as the pace reduction from the first 5-km to the end of the race. Within 3 min after the marathon, the same pre-exercise variables were obtained. Results: Marathoners reduced their running pace from 3.5 6 0.4 m/s after 5-km to 2.9 6 0.6 m/s at the end of the race (P,0.05), although the running fatigue experienced by the marathoners was uneven. Marathoners with greater running fatigue (. 15% pace reduction) had elevated post-race myoglobin (1318 6 1411 v 623 6 391 mg L21; P,0.05), lactate dehydrogenase (687 6 151 v 583 6 117 U L21; P,0.05), and creatine kinase (564 6 469 v 363 6 158 U L21; P = 0.07) in comparison with marathoners that preserved their running pace reasonably well throughout the race. However, they did not differ in their body mass change (23.1 6 1.0 v 23.0 6 1.0%; P = 0.60) or post-race body temperature (38.7 6 0.7 v 38.9 6 0.9 uC; P = 0.35). Conclusions/Significance: Running pace decline during a marathon was positively related with muscle breakdown blood markers. To elucidate if muscle damage during a marathon is related to mechanistic or metabolic factors requires further investigation.
Resumo:
PURPOSE: The main goals of the present study were: 1) to review some recommendations about how to increase lean body mass; 2) to analyse whether following scientific sources of current recommendations, visible changes can be shown or not in a participant (body composition, strength and blood analyses). METHODS: One male athlete completed 12 weeks of resistance training program and following a diet protocol. Some test were determined such as, strength 6RM, blood analyses, skindfold measurements, body perimeters and impedance test. Body composition measurements were taken 3 times during the program (before-T1, after 6 weeks of intervention period-T2 and at the end of the program-T3). On the other hand, strength tests and blood analyses were performed twice (before and after the program). RESULTS: Strength was increased in general; blood analyses showed that Creatine kinase was increased a 104% and Triglycerides level was decreased a 22.5%; in the impedance test, body mass (1.6%), lean body mass (3.5%) and Body mass index (1.7%) were increased, whereas fat mass was decreased (15.5%); relaxed and contracted biceps perimeters were also increased. CONCLUSION: A muscle hypertrophy training program mixed with an appropriate diet during 12 weeks leads to interesting adaptations related to increase in body weight, lean body mass, biceps perimeters, strength and creatine kinase levels, and a decrease in fat mass.
Resumo:
During the 160th research cruise of the FRV "Walther Herwig III" in the North Sea in May 1995 an ice-storage experiment with whiting was performed. Gutted whiting with and without spleen was stored in melting water-ice. Freshness and/or spoilage were monitored by measuring sensory, chemical, physical and microbiological indicators. It was found that besides the classical sensory assessment on the cooked sample and the EU-quality grading scheme, the microbiological counts were of major importance for the determination of the degree of freshness or spoilage. The cfu (colony forming units) of spoilage bacteria on the skin correlated significantly with time in ice. A very good correlation was also found for the cfu of spoilage bacteria with the sensory assessed odour of the cooked fillet sample. The measurement of the fish tissue with the Intellectron Fischtester VI and the determination of the creatine content in fillet are both suitable freshness and spoilage indicators. The pH-value measured in different body compartments and in musele homogenate and the ammonia content are only of limited value for freshness determination. Removal of kidney did not influence the shelf life.
Resumo:
North-Sea whiting shows a much shorter shelf life in melting ice than other gadoid fishes like saithe, cod and haddock. It can be stored for a maximum of 14 days in ice before being rated as unfit for human consumption. Appropriate freshness indicators for whiting are: sensory tests, dimethylamine- and trimethylamine oxide-nitrogen, creatine content. Of most value for whiting is the determination of thc electric resistance by the fishtester VI.
Resumo:
The investigations presented in this thesis use various in vivo techniques to understand how trans-acting factors control gene expression. The first part addresses the transcriptional regulation of muscle creatine kinase (MCK). MCK expression is activated during the course of development and is found only in differentiated muscle. Several in vivo footprints are observed at the enhancer of this gene, but all of these interactions are limited to cell types that express MCK. This is interesting because two of the footprints appear to represent muscle specific use of general transcription factors, while the other two correspond to sites that can bind the myogenic regulator, MyoD1, in vitro. MyoD1 and these general factors are present in myoblasts, but can bind to the enhancer only in myocytes. This suggests that either the factors themselves are post-translationally modified (phosphorylation or protein:protein interactions), or the accessibility of the enhancer to the factors is limited (changes in chromatin structure). The in vivo footprinting study of MCK was performed with a new ligation mediated, single-sided PCR (polymerase chain reaction) technique that I have developed.
The second half of the thesis concerns the regulation of mouse metallothionein (MT). Metallothioneins are a family of highly conserved housekeeping genes whose expression can be induced by heavy metals, steroids, and other stresses. By adapting a primer extension method of genomic sequencing to in vivo footprinting, I've observed both metal inducible and noninducible interactions at the promoter of MT-I. From these results I've been able to limit the possible mechanisms by which metal responsive trans-acting factors induce transcription. These interpretations correlate with a second line of experiments involving the stable titration of positive acting factors necessary for induction of MT. I've amplified the promoter of MT to 10^2-10^3 copies per cell by fusing the 5' and 3' ends of the MT gene to the coding region of DHFR and selecting cells for methotrexate resistance. In these cells, there is a metal-specific titration effect, and although it acts at the level of transcription, it appears to be independent of direct DNA binding factors.
Resumo:
Desordens do sistema renal podem ser as causas da hipertensão arterial, a qual pode, por sua vez, causar doenças renais. A pressão sanguínea elevada é muito comum também nas doenças crônicas dos rins, e é, além disso, um conhecido fator de risco para uma mais rápida progressão da falha renal. A incidência de doenças renais crônicas está aumentando no mundo, e há uma grande necessidade de identificar as terapias capazes de deter ou reduzir a progressão da doença. Há crescente evidência de que as estatinas poderiam desempenhar um papel terapêutico. Além disso, tem sido demonstrado que a atividade física melhora a função renal em pacientes. Estudos ultra-estruturais em humanos e em ratos demonstraram a presença de junções gap dentro de todas as células do glomérulo e os podócitos demonstraram conter principalmente conexina-43 (Cx-43). O presente estudo tem como objetivo observar os efeitos da rosuvastatina e da atividade física de baixa intensidade na estrutura e ultra-estrutura renal e na expressão glomerular de Cx-43 em ratos normotensos (WKY) e em ratos espontaneamente hipertensos (SHR). Os ratos foram divididos aleatoriamente em oito grupos: WKY-C: animais normotensos que não receberam rosuvastatina; WKY-ROS: animais normotensos que receberam rosuvastatina 20mg/kg/dia por gavagem orogástrica; SHR-C: animais hipertensos que não receberam rosuvastatina; SHR-ROS: animais hipertensos que receberam rosuvastatina, como descrito no grupo WKY-ROS; SED-WKY: animais normotensos sedentários; EX-WKY: animais normotensos exercitados; SED-SHR: animais hipertensos sedentários; e, EX-SHR: animais hipertensos exercitados. Os animais dos grupos SHR-C, SHR-ROS e SED-SHR apresentaram níveis de pressão arterial maiores que os animais dos grupos WKY-C, WKY-ROS, SED-WKY, EX-WKY e EX-SHR. A massa corporal dos grupos de animais não diferiram significativamente durante o experimento. Não houve diferença nos níveis sanguíneos de uréia, creatinina, ácido úrico e creatinafosfoquinase entre os animas dos grupos estudados. No entanto, houve um aumento da excreção de proteína de 24 horas nos animais do grupo SHR-C. Houve um aumento na área capsular nos animais do grupo SHR-C. Por microscopia eletrônica de transmissão observou-se que nos animais SHR-C e SED-SHR a barreira de filtração glomerular, o diafragma de fenda e os podócitos estão alterados exibindo os vacúolos nos podócitos e pedicelos mais curtos e mais espessos. Por microscopia eletrônica de varredura, os animais SHR-C e SED-SHR exibiram pedicelos mais afilados, curtos e tortuosos. Um aumento da imunofluorescência para Cx-43 foi observada em células epiteliais viscerais dos glomérulos dos animais do grupo WKY-ROS e nas células parietais e viscerais dos glomérulos dos animais do grupo SHR-ROS, se comparado com os grupos WKY-C e SHR-C. Por outro lado, os animais dos grupos SED-SHR e EX-SHR exibiram diminuição da expressão de Cx-43, comparados aos animais SED-WKY e EX-WKY. Em conclusão, podemos supor que os efeitos renais da rosuvastatina e da atividade física de baixa intensidade podem ser ferramentas terapêuticas para melhorar a estrutura e conseqüentemente a função renal em indivíduos hipertensos
Resumo:
Intergeneric hybridization between the epinepheline serranids Cephalopholis fulva and Paranthias furcifer in waters off Bermuda was investigated by using morphological and molecular characters. Putative hybrids, as well as members of each presumed parent species, were analyzed for 44 morphological characters and screened for genetic variation at 16 nuclear allozyme loci, two nuclear (n)DNA loci, and three mitochondrial (mt)DNA gene regions. Four of 16 allozyme loci, creatine kinase (CK-B*), fumarase (FH*), isocitrate dehydrogenase (ICDH-S*), and lactate dehydrogenase (LDH-B*), were unique in C. fulva and P. furcifer. Restriction fragments of two nuclear DNA intron regions, an actin gene intron and the second intron in the S7 ribosomal protein gene, also exhibited consistent differences between the two presumed parent species. Restriction fragments of three mtDNA regions—ND4, ATPase 6, and 12S/16S ribosomal RNA—were analyzed to identify maternal parentage of putative hybrids. Both morphological data and nuclear genetic data were found to be consistent with the hypothesis that the putative hybrids were the result of interbreeding between C. fulva and P. furcifer. Mean values of 38 morphological characters were different between presumed parent species, and putative hybrids were intermediate to presumed parent species for 33 of these characters. A principal component analysis of the morphological and meristic data was also consistent with hybridization between C. fulva and P. furcifer. Thirteen of 15 putative hybrids were heterozygous at all diagnostic nuclear loci, consistent with F1 hybrids. Two putative hybrids were identified as post-F1 hybrids based on homozygosity at one nuclear locus each. Mitochondrial DNA analysis showed that the maternal parent of all putative hybrid individuals was C. fulva. A survey of nuclear and mitochondrial loci of 57 C. fulva and 37 P. furcifer from Bermuda revealed no evidence of introgression between the parent species mediated by hybridization.
Resumo:
Deaths from microcystin toxication have widely been attributed to hypovolemic shock due to hepatic interstitial hemorrhage, while some recent studies suggest that cardiogenic complication is also involved. So far, information on cardiotoxic effects of MC has been rare and the underlying mechanism is still puzzling. The present study examined toxic effects of microcystins on heart muscle of rats intravenously injected with extracted MC at two doses, 0.16LD(50) (14 mu g MC-LReq kg(-1) body weight) and 1LD(50) (87 mu g MC-LReq kg(-1) body weight). In the dead rats, both TTC staining and maximum elevations of troponin I levels confirmed myocardial infarction after MC exposure, besides a serious interstitial hemorrhage in liver. In the 1LD(50) dose group, the coincident falls in heart rate and blood pressure were related to mitochondria dysfunction in heart, while increases in creatine kinase and troponin I levels indicated cardiac cell injury. The corresponding pathological alterations were mainly characterized as loss of adherence between cardiac myocytes and swollen or ruptured mitochondria at the ultrastructural level. MC administration at a dose of 1LD(50) not only enhanced activities and up-regulated mRNA transcription levels of antioxidant enzymes, but also increased GSH content. At both doses, level of lipid peroxides increased obviously, suggesting serious oxidative stress in mitochondria. Simultaneously. complex I and III were significantly inhibited, indicating blocks in electron flow along the mitochondrial respiratory chain in heart. In conclusion, the findings of this study implicate a role for MC-induced cardiotoxicity as a potential factor that should be considered when evaluating the mechanisms of death associated with microcystin intoxication in Brazil. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of H-1 NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. H-1 NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the Perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar.