996 resultados para Cr : Nd : YAG crystal
Resumo:
Pulsed Nd:YAG has been adopted successfully in welding process of thin (0.7 mm) Ti6Al4V. Laser welding of such thin sheet requires a small focal spot, good laser beam quality and fast travel speed, since too much heat generation can cause distortion for thin sheet weld. The microstructures of Ti6Al4V were complex and strongly affected the mechanical properties. These structures include: a´ martensite, metastable ß, Widmanstätten, bimodal, lamellar and equiaxed microstructure. Bimodal and Widmanstätten structures exhibit a good-balance between strength and ductility. The microstructure of pulsed Nd:YAG welded Ti6Al4V was primarily a´ martensite, which showed the lowest ductility but not significantly high strength. A heat treatment at 950 followed by furnace cooling can transform the microstructure in the weld from a´ martensite structure into Widmanstätten structure.
Resumo:
Mechanisms of a change in the refractive index appearing in an intensely diode-pumped Yb:YAG-laser disk element are studied with the help of polarisation interferometry and dynamic grating testing. It is found that changes in the electronic component of the refractive index arising upon changing the populations of electronic levels of Yb ions (the ground F state and the upper F level of the laser transition) and caused by the difference in the polarisability of these levels are an order of magnitude greater than thermal changes in the refractive index. It is shown that the difference Δp in the polarisability at the probe wavelength of 633 nm is 1.9 × 10 cm and at the laser transition wavelength of 1029 nm is 1.6 × 10 cm. ©2006 Kvantovaya Elektronika and Turpion Ltd.
Resumo:
Purpose: Current panretinal laser photocoagulative parameters are based on the Diabetic Retinopathy Study, which used exposures of 0.1 - 0.5 second to achieve moderate intensity retinal burns. Unfortunately, many patients find these settings painful. We wanted to investigate whether reducing exposure time and increasing power to give the same endpoint, is more comfortable and effective. Methods: 20 patients having panretinal photocoagulation for the first time underwent random allocation to two forms of laser treatment: half of the retinal area scheduled for treatment was treated with Green Yag laser with conventional parameters {exposure time 0.1 second (treatment A), power density sufficient to produce a visible grey - white burns}. The other half treated with shorter exposure 0.02 second (treatment B). All patient were asked to evaluate severity of pain on a visual analogue scale ranging from 0 - 10 (0 = no pain, 10 = most severe pain). All patients were masked as to the type of treatment. The order of carrying out the treatment on each patient was randomised. Fundus photographs were taken of each hemifundus to confirm treatment. Results: Of the 20 patients, 17 had proliferative diabetic retinopathy, 2 had ischaemic central retinal vein occlusion and one had ocular ischaemic syndrome. The average pain response to treatment A was 5.11 on a visual analogue scale with a mean power of 0.178 Watt; the average pain response to treatment B was 1.40 with a mean power of 0.489 Watt. Short exposure laser burns were significantly less painful (P < 0.001). Conclusion: Shortening exposure time with increased power is more comfortable for patients undergoing panretinal photocoagulation than conventional parameters.
Adhesion of fibroblasts cells on dentine cut surfaces by Er:YAG laser treated or not by Nd:YAG laser
Resumo:
The performance of laser-induced breakdown spectrometry (LIBS) for the determination of Ba, Cd, Cr and Pb in toys has been evaluated by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with intensified charge-coupled device detector. Samples were purchased in different cities of Sao Paulo State market and analyzed directly without sample preparation. Laser-induced breakdown spectrometry experimental conditions (number of pulses, delay time. integration time gate and pulse energy) were optimized by using a Doehlert design. Laser-induced breakdown spectrometry signals correlated reasonably well with inductively coupled plasma optical emission spectrometry (ICP OES) concentrations after microwave-assisted acid digestion of selected samples. Thermal analysis was used for polymer identification and scanning electron microscopy to Visualize differences in crater geometry of different polymers employed for toy fabrication. Results indicate that laser-induced breakdown spectrometry can be proposed as a rapid screening method for investigation of potentially toxic elements in toys. The unique application of laser-induced breakdown spectrometry for identification of contaminants in successive layers of ink and polymer is also demonstrated. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Several experiments (time-resolved Z-scan experiments based on pulsed and CW pump lasers, time-resolved divergence diagnostics) have been performed to examine and clarify the question of the converging or diverging population lensing effect occurring in a Cr(3+):Al(2)O(3) ruby laser. The dynamics of the laser far-field divergence of such a laser indeed indicated initially a diverging effect while Z-scan measurements conclude to a converging one. The origin of this discrepancy is thus analysed and elucidated here by introducing the general concept of correlation collapse between the centre and the wings of a laser beam having some clipping. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to determine clinical parameters for the use of Er,Cr:YSGG laser in the treatment of dentine hypersensitivity. Two antagonist areas were determined as control and experimental areas for irradiation in 90 premolar roots. Each surface was conditioned with 24% EDTA (sub-group 1) and 35% phosphoric acid (sub-group 2) and irradiated with the following settings: 1) Er:YAG, 60 mJ, 2 Hz, defocused; groups 2 to 9: irradiation with Er,Cr:YSGG laser, 20 Hz, Z6 tip, 0% of air and water: 2) Er,Cr:YSGG 0.25 W; 3) 0.5 W; 4) 0.75 W; 5) 1.0 W; 6) 1.25 W, 7) 1.50 W, 8) 2 W; 9) 2 W. After irradiation, samples were immersed in methylene blue solution and included in epoxy resin to obtain longitudinal cuts. The images were digitalized and analyzed by computer software. Although the samples irradiated with Er:YAG laser showed less microleakage, sub-group 1 showed differences between the groups, differing statistically from groups 3, 6, and 9. The results of sub-group 2 showed that the mean values of Er:YAG samples showed a negative trend, however, no differences were detected between the groups. For scanning electron microscopy analysis, dentine squares were obtained and prepared to evaluate the superficial morphology. Partial closure of dentinal tubules was observed after irradiation with Er:YAG and Er,Cr:YSGG laser in the 0.25 and 0.50 W protocols. As the energy densities rose, open dentinal tubules, carbonization and cracks were observed. It can be concluded that none of the parameters were capable of eliminating microleakage, however, clinical studies with Er:YAG and Er,Cr:YSGG lasers should be conducted with the lowest protocols in order to determine the most satisfactory setting for dentine hypersensitivity.