954 resultados para Convergence Analysis
Resumo:
A new finite element is developed for free vibration analysis of high speed rotating beams using basis functions which use a linear combination of the solution of the governing static differential equation of a stiff-string and a cubic polynomial. These new shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. The natural frequencies predicted by the proposed element are compared with an element with stiff-string, cubic polynomial and quintic polynomial shape functions. It is found that the new element exhibits superior convergence compared to the other basis functions.
Resumo:
The details of development of the stiffness matrix for a doubly curved quadrilateral element suited for static and dynamic analysis of laminated anisotropic thin shells of revolution are reported. Expressing the assumed displacement state over the middle surface of the shell as products of one-dimensional first order Hermite polynomials, it is possible to ensure that the displacement state for the assembled set of such elements, is geometrically admissible. Monotonic convergence of total potential energy is therefore possible as the modelling is successively refined. Systematic evaluation of performance of the element is conducted, considering various examples for which analytical or other solutions are available.
Resumo:
We propose an iterative estimating equations procedure for analysis of longitudinal data. We show that, under very mild conditions, the probability that the procedure converges at an exponential rate tends to one as the sample size increases to infinity. Furthermore, we show that the limiting estimator is consistent and asymptotically efficient, as expected. The method applies to semiparametric regression models with unspecified covariances among the observations. In the special case of linear models, the procedure reduces to iterative reweighted least squares. Finite sample performance of the procedure is studied by simulations, and compared with other methods. A numerical example from a medical study is considered to illustrate the application of the method.
Resumo:
A modified least mean fourth (LMF) adaptive algorithm applicable to non-stationary signals is presented. The performance of the proposed algorithm is studied by simulation for non-stationarities in bandwidth, centre frequency and gain of a stochastic signal. These non-stationarities are in the form of linear, sinusoidal and jump variations of the parameters. The proposed LMF adaptation is found to have better parameter tracking capability than the LMS adaptation for the same speed of convergence.
Resumo:
The topic of this dissertation lies in the intersection of harmonic analysis and fractal geometry. We particulary consider singular integrals in Euclidean spaces with respect to general measures, and we study how the geometric structure of the measures affects certain analytic properties of the operators. The thesis consists of three research articles and an overview. In the first article we construct singular integral operators on lower dimensional Sierpinski gaskets associated with homogeneous Calderón-Zygmund kernels. While these operators are bounded their principal values fail to exist almost everywhere. Conformal iterated function systems generate a broad range of fractal sets. In the second article we prove that many of these limit sets are porous in a very strong sense, by showing that they contain holes spread in every direction. In the following we connect these results with singular integrals. We exploit the fractal structure of these limit sets, in order to establish that singular integrals associated with very general kernels converge weakly. Boundedness questions consist a central topic of investigation in the theory of singular integrals. In the third article we study singular integrals of different measures. We prove a very general boundedness result in the case where the two underlying measures are separated by a Lipshitz graph. As a consequence we show that a certain weak convergence holds for a large class of singular integrals.
Resumo:
This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.
A Legendre spectral element model for sloshing and acoustic analysis in nearly incompressible fluids
Resumo:
A new spectral finite element formulation is presented for modeling the sloshing and the acoustic waves in nearly incompressible fluids. The formulation makes use of the Legendre polynomials in deriving the finite element interpolation shape functions in the Lagrangian frame of reference. The formulated element uses Gauss-Lobatto-Legendre quadrature scheme for integrating the volumetric stiffness and the mass matrices while the conventional Gauss-Legendre quadrature scheme is used on the rotational stiffness matrix to completely eliminate the zero energy modes, which are normally associated with the Lagrangian FE formulation. The numerical performance of the spectral element formulated here is examined by doing the inf-sup test oil a standard rectangular rigid tank partially filled with liquid The eigenvalues obtained from the formulated spectral element are compared with the conventional equally spaced node locations of the h-type Lagrangian finite element and the predicted results show that these spectral elements are more accurate and give superior convergence The efficiency and robustness of the formulated elements are demonstrated by solving few standard problems involving free vibration and dynamic response analysis with undistorted and distorted spectral elements. and the obtained results are compared with available results in the published literature (C) 2009 Elsevier Inc All rights reserved
Resumo:
A new rotating beam finite element is developed in which the basis functions are obtained by the exact solution of the governing static homogenous differential equation of a stiff string, which results from an approximation in the rotating beam equation. These shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. Using this new element and the Hermite cubic finite element, a convergence study of natural frequencies is performed, and it is found that the new element converges much more rapidly than the conventional Hermite cubic element for the first two modes at higher rotation speeds. The new element is also applied for uniform and tapered rotating beams to determine the natural frequencies, and the results compare very well with the published results given in the literature.
Resumo:
It is well known that the numerical accuracy of a series solution to a boundary-value problem by the direct method depends on the technique of approximate satisfaction of the boundary conditions and on the stage of truncation of the series. On the other hand, it does not appear to be generally recognized that, when the boundary conditions can be described in alternative equivalent forms, the convergence of the solution is significantly affected by the actual form in which they are stated. The importance of the last aspect is studied for three different techniques of computing the deflections of simply supported regular polygonal plates under uniform pressure. It is also shown that it is sometimes possible to modify the technique of analysis to make the accuracy independent of the description of the boundary conditions.
Resumo:
An analytical treatment of performance analysis of guidance laws is possible only in simplistic scenarios. As the complexity of the guidance system increases, a search for analytical solutions becomes quite impractical. In this paper, a new performance measure, based upon the notion of a timescale gap that can be computed through numerical simulations, is developed for performance analysis of guidance laws. Finite time Lyapunov exponents are used to define the timescale gap. It is shown that the timescale gap can be used for quantification of the rate of convergence of trajectories to the collision course. Comparisonbetween several guidance laws, based on the timescale gap, is presented. Realistic simulations to study the effect of aerodynamicsand atmospheric variations on the timescale gap of these guidance laws are also presented.
Resumo:
Growth and Convergence: The Case of China Since the initiation of economic reforms in 1978, China has become one of the world’s fast-growing economies. The rapid growth, however, has not been shared equally across the different regions in China. The prominent feature of substantial differences in incomes and growth rates across the different Chinese regions has attracted the attention of many researchers. This book focuses on issues related to economic growth and convergence across the Chinese regions over the past three decades. The book has eight chapters. Apart from an introduction chapter and a concluding chapter, all the other chapters each deal with some certain aspects of the central issue of regional growth and convergence across China over the past three decades. The whole book is organized as follows. Chapter 1 provides an introduction to the basic issues involved in this book. Chapter 2 tests economic growth and convergence across 31 Chinese provinces during 1981-2005, based on the theoretical framework of the Solow growth model. Chapter 3 investigates the relationship between openness to foreign economic activities, such as foreign trade and foreign direct investment, and the regional economic growth in the case of China during 1981-2005. Chapter 4, based on data of 31 Chinese provinces over the period 1980-2004, presents new evidence on the effects of structural shocks and structural transformation on growth and convergence among the Chinese regions. Chapter 5, by building up an empirical model that takes account of different potential effects of foreign direct investment, focuses on the impacts of foreign direct investment on China’s regional economic performance and growth. Chapter 6 reconsiders the growth and convergence problem of the Chinese regions in an alternative theoretical framework with endogenous saving behavior and capital mobility across regions. Chapter 7, by building up a theoretical model concerning comparative advantage and transaction efficiency, focuses on one of the potential mechanisms through which China achieves its fast economic growth over the past few decades. Chapter 8 concludes the book by summarizing the results from the previous chapters and suggesting directions for further studies.
Resumo:
We consider the slotted ALOHA protocol on a channel with a capture effect. There are M
Resumo:
In this paper, we propose a novel and efficient algorithm for modelling sub-65 nm clock interconnect-networks in the presence of process variation. We develop a method for delay analysis of interconnects considering the impact of Gaussian metal process variations. The resistance and capacitance of a distributed RC line are expressed as correlated Gaussian random variables which are then used to compute the standard deviation of delay Probability Distribution Function (PDF) at all nodes in the interconnect network. Main objective is to find delay PDF at a cheaper cost. Convergence of this approach is in probability distribution but not in mean of delay. We validate our approach against SPICE based Monte Carlo simulations while the current method entails significantly lower computational cost.
Resumo:
This study investigates the process of producing interactivity in a converged media environment. The study asks whether more media convergence equals more interactivity. The research object is approached through semi-structured interviews of prominent decision makers within the Finnish media. The main focus of the study are the three big ones of the traditional media, radio, television and the printing press, and their ability to adapt to the changing environment. The study develops theoretical models for the analysis of interactive features and convergence. Case-studies are formed from the interview data and they are evaluated against the models. As a result the cases arc plotted and compared on a four-fold table. The cases are Radio Rock, NRJ, Biu Brother, Television Chat, Olivia and Sanoma News. It is found out that the theoretical models can accurately forecast the results of the case studies. The models are also able to distinguish different aspects of both interactivity and convergence so that a case, which at a first glance seems not to be very interactive is in the end found out to receive second highest scores on the analysis. The highest scores are received by Big Brother and Sanoma News. Through the theory and the analysis of the research data it is found out that the concepts of interactivity and convergence arc intimately intertwined and very hard in many cases to separate from each other. Hence the answer to the main question of this study is yes, convergence does promote interactivity and audience participation. The main theoretical background for the analysis of interactivity follows the work of Came Fleeter, Spiro Kiousis and Sally McMillan. Heeler's six-dimensional definition of interactivity is used as the basis for operationalizing interactivity. The actor-network theory is used as the main theoretical framework to analyze convergence. The definition and operationalization of the actor-network theory into a model of convergence follows the work of Michel Callon. Bruno Latour and especially John Law and Felix Stalder.
Resumo:
Short elliptical chamber mufflers are used often in the modern day automotive exhaust systems. The acoustic analysis of such short chamber mufflers is facilitated by considering a transverse plane wave propagation model along the major axis up to the low frequency limit. The one dimensional differential equation governing the transverse plane wave propagation in such short chambers is solved using the segmentation approaches which are inherently numerical schemes, wherein the transfer matrix relating the upstream state variables to the downstream variables is obtained. Analytical solution of the transverse plane wave model used to analyze such short chambers has not been reported in the literature so far. This present work is thus an attempt to fill up this lacuna, whereby Frobenius solution of the differential equation governing the transverse plane wave propagation is obtained. By taking a sufficient number of terms of the infinite series, an approximate analytical solution so obtained shows good convergence up to about 1300 Hz and also covers most of the range of muffler dimensions used in practice. The transmission loss (TL) performance of the muffler configurations computed by this analytical approach agrees excellently with that computed by the Matrizant approach used earlier by the authors, thereby offering a faster and more elegant alternate method to analyze short elliptical muffler configurations. (C) 2010 Elsevier Ltd. All rights reserved.