902 resultados para Content-Base Image Retrieval
Resumo:
Questa tesi si inserisce in un progetto di ricerca fra il gruppo di Matematica della Visione del Prof. Ferri e CA-MI S.r.l. volto a progettare un sistema di recupero di immagini mediante il quale un dermatologo potrà acquisire l’immagine di una lesione e recuperare da un database classificato le immagini più somiglianti. Il concetto stesso di “somiglianza” è formalmente realizzato da una parte dell’omologia persistente (funzioni di taglia). Questa tesi utilizza tali metodi al fine di ottenere una combinazione ottimale dei diversi classificatori che si ottengono utilizzando la modularità intrinseca nella teoria. A questo scopo vengono impiegati due modelli e diversi metodi numerici.
Resumo:
En el presente trabajo se intentará desarrollar un análisis en torno a la potencialidad de incluir en la formación de futuros docentes e investigadores de historia lo que podemos denominar educación con medios y educación en medios. Esto, por un lado, consistiría en la introducción didáctica de tecnologías de información-comunicación -entendiendo por ello la importancia vital para nuestro oficio de apropiarse de herramientas que posibiliten el trabajo con fuentes de diversa índole y en diferentes soportes- y, por otro lado, la realización en el espacio del aula de una historización que problematice y contextualice los espacios de producción y circulación de dichas tecnologías en el sistema capitalista posterior a la crisis económica mundial de la década del 70. En una primera instancia, se hará una revisión de la génesis de esta fase para luego reflexionar respecto de casos concretos dentro del ámbito universitario local que proponen construcciones colaborativas de contenidos, con empleo de edición de imagen y sonido digital, vinculación dentro de redes sociales, socialización de conocimiento. Se postula la posibilidad de que estas prácticas supongan elementos que obturen los fundamentos restrictivos del capitalismo cognitivo
Resumo:
En el presente trabajo se intentará desarrollar un análisis en torno a la potencialidad de incluir en la formación de futuros docentes e investigadores de historia lo que podemos denominar educación con medios y educación en medios. Esto, por un lado, consistiría en la introducción didáctica de tecnologías de información-comunicación -entendiendo por ello la importancia vital para nuestro oficio de apropiarse de herramientas que posibiliten el trabajo con fuentes de diversa índole y en diferentes soportes- y, por otro lado, la realización en el espacio del aula de una historización que problematice y contextualice los espacios de producción y circulación de dichas tecnologías en el sistema capitalista posterior a la crisis económica mundial de la década del 70. En una primera instancia, se hará una revisión de la génesis de esta fase para luego reflexionar respecto de casos concretos dentro del ámbito universitario local que proponen construcciones colaborativas de contenidos, con empleo de edición de imagen y sonido digital, vinculación dentro de redes sociales, socialización de conocimiento. Se postula la posibilidad de que estas prácticas supongan elementos que obturen los fundamentos restrictivos del capitalismo cognitivo
Resumo:
En el presente trabajo se intentará desarrollar un análisis en torno a la potencialidad de incluir en la formación de futuros docentes e investigadores de historia lo que podemos denominar educación con medios y educación en medios. Esto, por un lado, consistiría en la introducción didáctica de tecnologías de información-comunicación -entendiendo por ello la importancia vital para nuestro oficio de apropiarse de herramientas que posibiliten el trabajo con fuentes de diversa índole y en diferentes soportes- y, por otro lado, la realización en el espacio del aula de una historización que problematice y contextualice los espacios de producción y circulación de dichas tecnologías en el sistema capitalista posterior a la crisis económica mundial de la década del 70. En una primera instancia, se hará una revisión de la génesis de esta fase para luego reflexionar respecto de casos concretos dentro del ámbito universitario local que proponen construcciones colaborativas de contenidos, con empleo de edición de imagen y sonido digital, vinculación dentro de redes sociales, socialización de conocimiento. Se postula la posibilidad de que estas prácticas supongan elementos que obturen los fundamentos restrictivos del capitalismo cognitivo
Resumo:
A imagem mental e a memória visual têm sido consideradas como componentes distintos na codificação da informação, e associados a processos diferentes da memória de trabalho. Evidências experimentais mostram, por exemplo, que o desempenho em tarefas de memória baseadas na geração de imagem mentais (imaginação visual) sofre a interferência do ruído visual dinâmico (RVD), mas não se observa o mesmo efeito em tarefas de memória visual baseadas na percepção visual (memória visual). Embora várias evidências mostrem que tarefas de imaginação e de memória visual sejam baseadas em processos cognitivos diferentes, isso não descarta a possibilidade de utilizarem também processos em comum e que alguns resultados experimentais que apontam diferenças entre as duas tarefas resultem de diferenças metodológicas entre os paradigmas utilizados para estuda-las. Nosso objetivo foi equiparar as tarefas de imagem mental visual e memória visual por meio de tarefas de reconhecimento, com o paradigma de dicas retroativas espaciais. Sequências de letras romanas na forma visual (tarefa de memória visual) e acústicas (tarefa de imagem mental visual) foram apresentadas em quatro localizações espaciais diferentes. No primeiro e segundo experimento analisou-se o tempo do curso de recuperação tanto para o processo de imagem quanto para o processo de memória. No terceiro experimento, comparou-se a estrutura das representações dos dois componentes, por meio da apresentação do RVD durante a etapa de geração e recuperação. Nossos resultados mostram que não há diferenças no armazenamento da informação visual durante o período proposto, porém o RVD afeta a eficiência do processo de recuperação, isto é o tempo de resposta, sendo a representação da imagem mental visual mais suscetível ao ruído. No entanto, o processo temporal da recuperação é diferente para os dois componentes, principalmente para imaginação que requer mais tempo para recuperar a informação do que a memória. Os dados corroboram a relevância do paradigma de dicas retroativas que indica que a atenção espacial é requisitada em representações de organização espacial, independente se são visualizadas ou imaginadas.
Resumo:
In this paper, we present a novel indexing technique called Multi-scale Similarity Indexing (MSI) to index image's multi-features into a single one-dimensional structure. Both for text and visual feature spaces, the similarity between a point and a local partition's center in individual space is used as the indexing key, where similarity values in different features are distinguished by different scale. Then a single indexing tree can be built on these keys. Based on the property that relevant images have similar similarity values from the center of the same local partition in any feature space, certain number of irrelevant images can be fast pruned based on the triangle inequity on indexing keys. To remove the dimensionality curse existing in high dimensional structure, we propose a new technique called Local Bit Stream (LBS). LBS transforms image's text and visual feature representations into simple, uniform and effective bit stream (BS) representations based on local partition's center. Such BS representations are small in size and fast for comparison since only bit operation are involved. By comparing common bits existing in two BSs, most of irrelevant images can be immediately filtered. To effectively integrate multi-features, we also investigated the following evidence combination techniques-Certainty Factor, Dempster Shafer Theory, Compound Probability, and Linear Combination. Our extensive experiment showed that single one-dimensional index on multi-features improves multi-indices on multi-features greatly. Our LBS method outperforms sequential scan on high dimensional space by an order of magnitude. And Certainty Factor and Dempster Shafer Theory perform best in combining multiple similarities from corresponding multiple features.
Resumo:
In this paper we study some of the characteristics of the art painting image color semantics. We analyze the color features of differ- ent artists and art movements. The analysis includes exploration of hue, saturation and luminance. We also use quartile’s analysis to obtain the dis- tribution of the dispersion of defined groups of paintings and measure the degree of purity for these groups. A special software system “Art Paint- ing Image Color Semantics” (APICSS) for image analysis and retrieval was created. The obtained result can be used for automatic classification of art paintings in image retrieval systems, where the indexing is based on color characteristics.
Resumo:
Humans have a high ability to extract visual data information acquired by sight. Trought a learning process, which starts at birth and continues throughout life, image interpretation becomes almost instinctively. At a glance, one can easily describe a scene with reasonable precision, naming its main components. Usually, this is done by extracting low-level features such as edges, shapes and textures, and associanting them to high level meanings. In this way, a semantic description of the scene is done. An example of this, is the human capacity to recognize and describe other people physical and behavioral characteristics, or biometrics. Soft-biometrics also represents inherent characteristics of human body and behaviour, but do not allow unique person identification. Computer vision area aims to develop methods capable of performing visual interpretation with performance similar to humans. This thesis aims to propose computer vison methods which allows high level information extraction from images in the form of soft biometrics. This problem is approached in two ways, unsupervised and supervised learning methods. The first seeks to group images via an automatic feature extraction learning , using both convolution techniques, evolutionary computing and clustering. In this approach employed images contains faces and people. Second approach employs convolutional neural networks, which have the ability to operate on raw images, learning both feature extraction and classification processes. Here, images are classified according to gender and clothes, divided into upper and lower parts of human body. First approach, when tested with different image datasets obtained an accuracy of approximately 80% for faces and non-faces and 70% for people and non-person. The second tested using images and videos, obtained an accuracy of about 70% for gender, 80% to the upper clothes and 90% to lower clothes. The results of these case studies, show that proposed methods are promising, allowing the realization of automatic high level information image annotation. This opens possibilities for development of applications in diverse areas such as content-based image and video search and automatica video survaillance, reducing human effort in the task of manual annotation and monitoring.
Resumo:
A computer vision system that has to interact in natural language needs to understand the visual appearance of interactions between objects along with the appearance of objects themselves. Relationships between objects are frequently mentioned in queries of tasks like semantic image retrieval, image captioning, visual question answering and natural language object detection. Hence, it is essential to model context between objects for solving these tasks. In the first part of this thesis, we present a technique for detecting an object mentioned in a natural language query. Specifically, we work with referring expressions which are sentences that identify a particular object instance in an image. In many referring expressions, an object is described in relation to another object using prepositions, comparative adjectives, action verbs etc. Our proposed technique can identify both the referred object and the context object mentioned in such expressions. Context is also useful for incrementally understanding scenes and videos. In the second part of this thesis, we propose techniques for searching for objects in an image and events in a video. Our proposed incremental algorithms use the context from previously explored regions to prioritize the regions to explore next. The advantage of incremental understanding is restricting the amount of computation time and/or resources spent for various detection tasks. Our first proposed technique shows how to learn context in indoor scenes in an implicit manner and use it for searching for objects. The second technique shows how explicitly written context rules of one-on-one basketball can be used to sequentially detect events in a game.
Resumo:
In the past few years, human facial age estimation has drawn a lot of attention in the computer vision and pattern recognition communities because of its important applications in age-based image retrieval, security control and surveillance, biomet- rics, human-computer interaction (HCI) and social robotics. In connection with these investigations, estimating the age of a person from the numerical analysis of his/her face image is a relatively new topic. Also, in problems such as Image Classification the Deep Neural Networks have given the best results in some areas including age estimation. In this work we use three hand-crafted features as well as five deep features that can be obtained from pre-trained deep convolutional neural networks. We do a comparative study of the obtained age estimation results with these features.
Resumo:
Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.
Resumo:
Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.
Resumo:
There are still major challenges in the area of automatic indexing and retrieval of digital data. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. Research has been ongoing for a few years in the field of ontological engineering with the aim of using ontologies to add knowledge to information. In this paper we describe the architecture of a system designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval.