979 resultados para Compartments


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moonlighting functions have been described for several proteins previously thought to localize exclusively in the cytoplasm of bacterial or eukaryotic cells. Moonlighting proteins usually perform conserved functions, e. g. in glycolysis or as chaperonins, and their traditional and moonlighting function(s) usually localize to different cell compartments. The most characterized moonlighting proteins in Grampositive bacteria are the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which function in bacteria-host interactions, e. g. as adhesins or plasminogen receptors. Research on bacterial moonlighting proteins has focused on Gram-positive bacterial pathogens, where many of their functions have been associated with bacterial virulence. In this thesis work I show that also species of the genus Lactobacillus have moonlighting proteins that carry out functions earlier associated with bacterial virulence only. I identified enolase, GAPDH, glutamine synthetase (GS), and glucose-6-phosphate isomerase (GPI) as moonlighting proteins of Lactobacillus crispatus strain ST1 and demonstrated that they are associated with cell surface and easily released from the cell surface into incubation buffer. I also showed that these lactobacillar proteins moonlight either as adhesins with affinity for basement membrane and extracellular matrix proteins or as plasminogen receptors. The mechanisms of surface translocation and anchoring of bacterial moonlighting proteins have remained enigmatic. In this work, the surface localization of enolase, GAPDH, GS and GPI was shown to depend on environmental factors. The members of the genus Lactobacillus are fermentative organisms that lower the ambient pH by producing lactic acid. At acidic pH enolase, GAPDH, GS and GPI were associated with the cell surface, whereas at neutral pH they were released into the buffer. The release did not involve de novo protein synthesis. I showed that purified recombinant His6-enolase, His6-GAPDH, His6-GS and His6-GPI reassociate with cell wall and bind in vitro to lipoteichoic acids at acidic pH. The in-vitro binding of these proteins localizes to cell division septa and cell poles. I also show that the release of moonlighting proteins is enhanced in the presence of cathelicidin LL- 37, which is an antimicrobial peptide and a central part of the innate immunity defence. I found that the LL-37-induced detachment of moonlighting proteins from cell surface is associated with cell wall permeabilization by LL-37. The results in this thesis work are compatible with the hypothesis that the moonlighting proteins of L. crispatus associate to the cell wall via electrostatic or ionic interactions and that they are released into surroundings in stress conditions. Their surface translocation is, at least in part, a result from their release from dead or permeabilized cells and subsequent reassociation onto the cell wall. The results of this thesis show that lactobacillar cells rapidly change their surface architecture in response to environmental factors and that these changes influence bacterial interactions with the host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we investigated the metabolism, i.e. remodeling and translocation, of the aminophospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE). A new method for introduction of exogenous PS and PE molecular species to cultured cells was developed, and combined with mass spectrometry it enabled more detailed follow-up of the metabolism of single molecular species than previously. We found that I) exogenous PS and PE molecular species can be efficiently introduced to cultured cells without compromising cell integrity, II) PS and PE molecular species are remodeled by several phospholipases displaying selectivity based on phopholipid head group and acyl chain composition, III) PS decarboxylase (PSD) and Kennedy pathways provide a different PE molecular species composition to the cellular PE pool. In addition, PE species produced by these pathways are translocated from the site of synthesis to other cell compartments depending on their acyl chain composition. The data obtained in the present study helps to understand cellular phospholipid metabolism in more depth. The data show that effective labeling of cultured cells by exogenous phospholipids does not compromise cell viability and may be used to disturb cellular phospholipid composition to study lipid homeostasis. Remodeling and translocation of PS and PE molecular species is highly selective. The developed method and mass- spectrometric techniques may be used in future studies to understand disturbances in lipid homeostasis for example in diabetes mellitus, thus opening doors to optional scientific approaches to study mechanisms behind pathologies related to lipid disturbances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Click chemistry has been successfully extended into the field of molecular design of novel amphiphatic adducts. After their syntheses and characterizations, we have studied their aggregation properties in aqueous medium. Each of these adducts forms stable suspensions in water. These suspensions have been characterized by dynamic light scattering (DLS) studies and transmission electron microscopy (TEM). The presence of inner aqueous compartments in such aggregates has been demonstrated using dye (methylene blue) entrapment studies. These aggregates have been further characterized using X-ray diffraction (XRD), which indicates the existence of bilayer structures in them. Therefore, the resulting aggregates could be described as vesicles. The temperature-induced order-to-disorder transitions of the vesicular aggregates and the accompanying changes in their packing and hydration have been examined using high-sensitivity differential scanning calorimetry, fluorescence anisotropy, and generalized polarization measurements using appropriate membrane-soluble probe, 1,6-diphenylhexatriene, and Paldan, respectively. The findings of these studies are consistent with each other in terms of the apparent phase transition temperatures. Langmuir monolayer studies confirmed that these click adducts also form stable monolayers on buffered aqueous subphase at the air-water interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although a distinct need for FSH in the regulation of follicular maturation in the primate is well recognized, it is not clear how FSH controls the functionality of different cellular compartments of the follicle. It is also not evident whether there is a requirement for LH in follicular maturation in the primate. In the first part of the present study, female bonnet monkeys were administered a well-characterized ovine (o) LH antiserum to neutralize endogenous monkey LH for different periods during the follicular phase, and the effect on the overall follicular maturation process was assessed by analyzing serum estrogen (E) and progesterone (P) profiles. Neither continuous LH deprivation from Day 8 of the cycle nor deprivation of LH on any one day between Days 6 and 10 had a significant effect on serum E and P profiles and the follicular maturation process. The period for which the antiserum was effective was dependent upon the dose injected; 1 ml of the antiserum given on Day 8 blocked ovulation but not follicular maturation. To assess the effect of deprivation of LH/FSH at the cellular level, animals were deprived in vivo of LH (on Days 8 and 9 of the cycle) or of FSH (on Day 6 of the cycle) by injection of highly characterized hCG and ovine (o) FSH antisera, respectively; the in vitro responsiveness of granulosa and thecal cells isolated on Day 10 from these animals was then determined.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase relations in the system Mn-Rh-O are established at 1273 K by equilibrating different compositions either in evacuated quartz ampules or in pure oxygen at a pressure of 1.01 x 10(5) Pa. The quenched samples are examined by optical microscopy, X-ray diffraction, and energy-dispersive X-ray analysis (EDAX). The alloys and intermetallics in the binary Mn-Rh system are found to be in equilibrium with MnO. There is only one ternary compound, MnRh2O4, with normal spinel structure in the system. The compound Mn3O4 has a tetragonal structure at 1273 K. A solid solution is formed between MnRh2O4 and Mn3O4. The solid solution has the cubic structure over a large range of composition and coexists with metallic rhodium. The partial pressure of oxygen corresponding to this two-phase equilibrium is measured as a function of the composition of the spinel solid solution and temperature. A new solid-state cell, with three separate electrode compartments, is designed to measure accurately the chemical potential of oxygen in the two-phase mixture, Rh + Mn3-2xRh2xO4, which has 1 degree of freedom at constant temperature. From the electromotive force (emf), thermodynamic mixing properties of the Mn3O4-MnRh2O4 solid solution and Gibbs energy of formation of MnRh2O4 are deduced. The activities exhibit negative deviations from Raoult's law for most of the composition range, except near Mn3O4, where a two-phase region exists. In the cubic phase, the entropy of mixing of the two Rh3+ and Mn3+ ions on the octahedral site of the spinel is ideal, and the enthalpy of mixing is positive and symmetric with respect to composition. For the formation of the spinel (sp) from component oxides with rock salt (rs) and orthorhombic (orth) structures according to the reaction, MnO (rs) + Rh2O3 (orth) --> MnRh2O4 (sp), DELTAG-degrees = -49,680 + 1.56T (+/-500) J mol-1. The oxygen potentials corresponding to MnO + Mn3O4 and Rh + Rh2O3 equilibria are also obtained from potentiometric measurements on galvanic cells incorporating yttria-stabilized zirconia as the solid electrolyte. From these results, an oxygen potential diagram for the ternary system is developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolutionary diversity of the HSP70 gene family at the genetic level has generated complex structural variations leading to altered functional specificity and mode of regulation in different cellular compartments. By utilizing Saccharomyces cerevisiae as a model system for better understanding the global functional cooperativity between Hsp70 paralogs, we have dissected the differences in functional properties at the biochemical level between mitochondrial heat shock protein 70 (mtHsp70) Ssc1 and an uncharacterized Ssc3 paralog. Based on the evolutionary origin of Ssc3 and a high degree of sequence homology with Ssc1, it has been proposed that both have a close functional overlap in the mitochondrial matrix. Surprisingly, our results demonstrate that there is no functional cross-talk between Ssc1 and Ssc3 paralogs. The lack of in vivo functional overlap is due to altered conformation and significant lower stability associated with Ssc3. The substrate-binding domain of Ssc3 showed poor affinity toward mitochondrial client proteins and Tim44 due to the open conformation in ADP-bound state. In addition to that, the nucleotide-binding domain of Ssc3 showed an altered regulation by the Mge1 co-chaperone due to a high degree of conformational plasticity, which strongly promotes aggregation. Besides, Ssc3 possesses a dysfunctional inter-domain interface thus rendering it unable to perform functions similar to generic Hsp70s. Moreover, we have identified the critical amino acid sequence of Ssc1 and Ssc3 that can ``make or break'' mtHsp70 chaperone function. Together, our analysis provides the first evidence to show that the nucleotide-binding domain of mtHsp70s plays a critical role in determining the functional specificity among paralogs and orthologs across kingdoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two types of cationic cholesteryl amphiphiles, one where the headgroup is attached to the steroid by an ester linkage and the second by an ether linkage, were synthesized. A third type of cholesteryl lipid bearing an oligoethylene glycol segment was also prepared. Each of these synthetic lipids generated vesicle-like aggregates with closed inner aqueous compartments from their aqueous suspensions. We examined their interaction with L-α-dipalmitoyl phosphatidylcholine (DPPC) membranes using fluorescence anisotropy, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). When included in membranes, the synthetic cholesteryl lipids were found to quench the chain motion of the acyl chains of DPPC. This suggests that these cationic cholesteryl derivatives act as filler molecules despite modification at the headgroup level from the molecular structure of natural cholesterol. Careful analyses of DSC and fluorescence anisotropy data suggest that the nature of perturbation induced by each of these cationic cholesterol derivatives is dependent on the details of their molecular structure and provides significant information on the nature of interaction of these derivatives with phospholipid molecules. In general, amphiphiles that support structured water at the interfacial region tend to rigidify the fluid phase more than others. Importantly, these cholesteryl amphiphiles behave less like cholesterol in that their incorporation in DPPC not only abolishes the phase transition but also depresses the phase transition temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rathour RK, Narayanan R. Influence fields: a quantitative framework for representation and analysis of active dendrites. J Neurophysiol 107: 2313-2334, 2012. First published January 18, 2012; doi:10.1152/jn.00846.2011.-Neuronal dendrites express numerous voltage-gated ion channels (VGICs), typically with spatial gradients in their densities and properties. Dendritic VGICs, their gradients, and their plasticity endow neurons with information processing capabilities that are higher than those of neurons with passive dendrites. Despite this, frameworks that incorporate dendritic VGICs and their plasticity into neurophysiological and learning theory models have been far and few. Here, we develop a generalized quantitative framework to analyze the extent of influence of a spatially localized VGIC conductance on different physiological properties along the entire stretch of a neuron. Employing this framework, we show that the extent of influence of a VGIC conductance is largely independent of the conductance magnitude but is heavily dependent on the specific physiological property and background conductances. Morphologically, our analyses demonstrate that the influences of different VGIC conductances located on an oblique dendrite are confined within that oblique dendrite, thus providing further credence to the postulate that dendritic branches act as independent computational units. Furthermore, distinguishing between active and passive propagation of signals within a neuron, we demonstrate that the influence of a VGIC conductance is spatially confined only when propagation is active. Finally, we reconstruct functional gradients from VGIC conductance gradients using influence fields and demonstrate that the cumulative contribution of VGIC conductances in adjacent compartments plays a critical role in determining physiological properties at a given location. We suggest that our framework provides a quantitative basis for unraveling the roles of dendritic VGICs and their plasticity in neural coding, learning, and homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discrepancy between the X-ray and NMR structures of Mycobacterium tuberculosis peptidyl-tRNA hydrolase in relation to the functionally important plasticity of the molecule led to molecular dynamics simulations. The X-ray and the NMR studies along with the simulations indicated an inverse correlation between crowding and molecular volume. A detailed comparison of proteins for which X-ray and the NMR structures appears to confirm this correlation. In consonance with the reported results of the investigations in cellular compartments and aqueous solution, the comparison indicates that the crowding results in compaction of the molecule as well as change in its shape, which could specifically involve regions of the molecule important in function. Crowding could thus influence the action of proteins through modulation of the functionally important plasticity of the molecule. Selvaraj M, Ahmad R, Varshney U and Vijayan M 2012 Crowding, molecular volume and plasticity: An assessment involving crystallography, NMR and simulations. J. Biosci. 37 953-963] DOI 10.1007/s12038-012-9276-5

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Indian Ocean, mid-depth oxygen minimum zones (OMZs) occur in the Arabian Sea and the Bay of Bengal. The lower part of the Arabian-Sea OMZ (ASOMZ; below 400 m) intensifies northward across the basin; in contrast, its upper part (above 400 m) is located in the central/eastern basin, well east of the most productive regions along the western boundary. The Bay-of-Bengal OMZ (BBOMZ), although strong, is weaker than the ASOMZ. To investigate the processes that maintain the Indian-Ocean OMZs, we obtain a suite of solutions to a coupled biological/physical model. Its physical component is a variable-density, 6 1/2-layer model, in which each layer corresponds to a distinct dynamical regime or water-mass type. Its biological component has six compartments: nutrients, phytoplankton, zooplankton, two size classes of detritus, and oxygen. Because the model grid is non-eddy resolving (0.5 degrees), the biological model also includes a parameterization of enhanced mixing based on the eddy kinetic energy derived from satellite observations. To explore further the impact of local processes on OMZs, we also obtain analytic solutions to a one-dimensional, simplified version of the biological model. Our control run is able to simulate basic features of the oxygen, nutrient, and phytoplankton fields throughout the Indian Ocean. The model OMZs result from a balance, or lack thereof, between a sink of oxygen by remineralization and subsurface oxygen sources due primarily to northward spreading of oxygenated water from the Southern Hemisphere, with a contribution from Persian-Gulf water in the northern Arabian Sea. The northward intensification of the lower ASOMZ results mostly from horizontal mixing since advection is weak in its depth range. The eastward shift of the upper ASOMZ is due primarily to enhanced advection and vertical eddy mixing in the western Arabian Sea, which spread oxygenated waters both horizontally and vertically. Advection carries small detritus from the western boundary into the central/eastern Arabian Sea, where it provides an additional source of remineralization that drives the ASOMZ to suboxic levels. The model BBOMZ is weaker than the ASOMZ because the Bay lacks a remote source of detritus from the western boundary. Although detritus has a prominent annual cycle, the model OMZs do not because there is not enough time for significant remineralization to occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na+ and K+ channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolutionary diversity of the HSP70 gene family at the genetic level has generated complex structural variations leading to altered functional specificity and mode of regulation in different cellular compartments. By utilizing Saccharomyces cerevisiae as a model system for better understanding the global functional cooperativity between Hsp70 paralogs, we have dissected the differences in functional properties at the biochemical level between mitochondrial heat shock protein 70 (mtHsp70) Ssc1 and an uncharacterized Ssc3 paralog. Based on the evolutionary origin of Ssc3 and a high degree of sequence homology with Ssc1, it has been proposed that both have a close functional overlap in the mitochondrial matrix. Surprisingly, our results demonstrate that there is no functional cross-talk between Ssc1 and Ssc3 paralogs. The lack of in vivo functional overlap is due to altered conformation and significant lower stability associated with Ssc3. The substrate-binding domain of Ssc3 showed poor affinity toward mitochondrial client proteins and Tim44 due to the open conformation in ADP-bound state. In addition to that, the nucleotide-binding domain of Ssc3 showed an altered regulation by the Mge1 co-chaperone due to a high degree of conformational plasticity, which strongly promotes aggregation. Besides, Ssc3 possesses a dysfunctional inter-domain interface thus rendering it unable to perform functions similar to generic Hsp70s. Moreover, we have identified the critical amino acid sequence of Ssc1 and Ssc3 that can “make or break” mtHsp70 chaperone function. Together, our analysis provides the first evidence to show that the nucleotide-binding domain of mtHsp70s plays a critical role in determining the functional specificity among paralogs and orthologs across kingdoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present herein a short tripeptide sequence (Lys-Phe-Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self-assembles in water and shows a reversible and concentration-dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH7.4 but rupture rapidly at pH approximate to 6. The pH-sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug-sensitive and drug-resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence-activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: DNA-binding protein from starved cells (Dps) are nano-compartments that can oxidize and store iron rendering protection from free radicals. Results: A histidine-aspartate ionic cluster in mycobaterial Dps2 modulates the rate of iron entry and exit in these proteins. Conclusion: Substitutions that disrupt the cluster interface alter the iron uptake/release properties with localized structural changes. Significance: Identifying important gating residues can help in designing nano-delivery vehicles. Dps (DNA-binding protein from starved cells) are dodecameric assemblies belonging to the ferritin family that can bind DNA, carry out ferroxidation, and store iron in their shells. The ferritin-like trimeric pore harbors the channel for the entry and exit of iron. By representing the structure of Dps as a network we have identified a charge-driven interface formed by a histidine aspartate cluster at the pore interface unique to Mycobacterium smegmatis Dps protein, MsDps2. Site-directed mutagenesis was employed to generate mutants to disrupt the charged interactions. Kinetics of iron uptake/release of the wild type and mutants were compared. Crystal structures were solved at a resolution of 1.8-2.2 for the various mutants to compare structural alterations vis a vis the wild type protein. The substitutions at the pore interface resulted in alterations in the side chain conformations leading to an overall weakening of the interface network, especially in cases of substitutions that alter the charge at the pore interface. Contrary to earlier findings where conserved aspartate residues were found crucial for iron release, we propose here that in the case of MsDps2, it is the interplay of negative-positive potentials at the pore that enables proper functioning of the protein. In similar studies in ferritins, negative and positive patches near the iron exit pore were found to be important in iron uptake/release kinetics. The unique ionic cluster in MsDps2 makes it a suitable candidate to act as nano-delivery vehicle, as these gated pores can be manipulated to exhibit conformations allowing for slow or fast rates of iron release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Redox signaling plays a crucial role in the pathogenesis of human immunodeficiency virus type-1 (HIV-1). The majority of HIV redox research relies on measuring redox stress using invasive technologies, which are unreliable and do not provide information about the contributions of subcellular compartments. A major technological leap emerges from the development of genetically encoded redox-sensitive green fluorescent proteins (roGFPs), which provide sensitive and compartment-specific insights into redox homeostasis. Here, we exploited a roGFP-based specific bioprobe of glutathione redox potential (E-GSH; Grx1-roGFP2) and measured subcellular changes in E-GSH during various phases of HIV-1 infection using U1 monocytic cells (latently infected U937 cells with HIV-1). We show that although U937 and U1 cells demonstrate significantly reduced cytosolic and mitochondrial E-GSH (approximately -310 mV), active viral replication induces substantial oxidative stress (E-GSH more than -240 mV). Furthermore, exposure to a physiologically relevant oxidant, hydrogen peroxide (H2O2), induces significant deviations in subcellular E-GSH between U937 and U1, which distinctly modulates susceptibility to apoptosis. Using Grx1-roGFP2, we demonstrate that a marginal increase of about similar to 25 mV in E-GSH is sufficient to switch HIV-1 from latency to reactivation, raising the possibility of purging HIV-1 by redox modulators without triggering detrimental changes in cellular physiology. Importantly, we show that bioactive lipids synthesized by clinical drug-resistant isolates of Mycobacterium tuberculosis reactivate HIV-1 through modulation of intracellular E-GSH. Finally, the expression analysis of U1 and patient peripheral blood mononuclear cells demonstrated a major recalibration of cellular redox homeostatic pathways during persistence and active replication of HIV.