960 resultados para Collaborative environments
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
This chapter investigates the resistance by institutional actors in ambiguous supply chain environments for online grocery provision. Recent studies have shown that significant shifts in urban geographies are increasing consumers' expectations of online retail provision. However, at the same time there is also growing evidence that the collaborative practice in online grocery provision within the urban supply chains is resisted. That these trends are found despite growing demand of online provision highlights both the difficulty of bringing geographically dispersed supply partners together and the problems associated with operating within and across ambiguous environments. Drawing upon twenty-nine in-depth interviews with a range of institutional actors, including retail, logistics, and urban planning experts within an urban metropolis in an emerging market, we detail the different ways that collaboration is resisted in online retail provision. Several different patterns of resistance were identified in (non-) collaboration notably, ideological, functional, regulatory and spatial. © 2011, IGI Global. C.
Resumo:
Even though e-learning endeavors have significantly proliferated in recent years, current e-learning technologies provide poor support for group-oriented learning. The now popular virtual world's technologies offer a possible solution. Virtual worlds provide the users with a 3D - computer generated shared space in which they can meet and interact through their virtual representations. Virtual worlds are very successful in developing high levels of engagement, presence and group presence in the users. These elements are also desired in educational settings since they are expected to enhance performance. The goal of this research is to test the hypothesis that a virtual world learning environment provides better support for group-oriented collaborative e-learning than other learning environments, because it facilitates the emergence of group presence. To achieve this, a quasi-experimental study was conducted and data was gathered through the use of various survey instruments and a set of collaborative tasks assigned to the participants. Data was gathered on the dependent variables: Engagement, Group Presence, Individual Presence, Perceived Individual Presence, Perceived Group Presence and Performance. The data was analyzed using the statistical procedures of Factor Analysis, Path Analysis, Analysis of Variance (ANOVA) and Multivariate Analysis of Variance (MANOVA). The study provides support for the hypothesis. The results also show that virtual world learning environments are better than other learning environments in supporting the development of all the dependent variables. It also shows that while only Individual Presence has a significant direct effect on Performance; it is highly correlated with both Engagement and Group Presence. This suggests that these are also important in regards to performance. Developers of e-learning endeavors and educators should incorporate virtual world technologies in their efforts in order to take advantage of the benefit they provide for e-learning group collaboration.
Resumo:
The hypothesis that the same educational objective, raised as cooperative or collaborative learning in university teaching does not affect students’ perceptions of the learning model, leads this study. It analyses the reflections of two students groups of engineering that shared the same educational goals implemented through two different methodological active learning strategies: Simulation as cooperative learning strategy and Problem-based Learning as a collaborative one. The different number of participants per group (eighty-five and sixty-five, respectively) as well as the use of two active learning strategies, either collaborative or cooperative, did not show differences in the results from a qualitative perspective.
Resumo:
The power of computer game technology is currently being harnessed to produce “serious games”. These “games” are targeted at the education and training marketplace, and employ various key game-engine components such as the graphics and physics engines to produce realistic “digital-world” simulations of the real “physical world”. Many approaches are driven by the technology and often lack a consideration of a firm pedagogical underpinning. The authors believe that an analysis and deployment of both the technological and pedagogical dimensions should occur together, with the pedagogical dimension providing the lead. This chapter explores the relationship between these two dimensions, and explores how “pedagogy may inform the use of technology”, how various learning theories may be mapped onto the use of the affordances of computer game engines. Autonomous and collaborative learning approaches are discussed. The design of a serious game is broken down into spatial and temporal elements. The spatial dimension is related to the theories of knowledge structures, especially “concept maps”. The temporal dimension is related to “experiential learning”, especially the approach of Kolb. The multi-player aspect of serious games is related to theories of “collaborative learning” which is broken down into a discussion of “discourse” versus “dialogue”. Several general guiding principles are explored, such as the use of “metaphor” (including metaphors of space, embodiment, systems thinking, the internet and emergence). The topological design of a serious game is also highlighted. The discussion of pedagogy is related to various serious games we have recently produced and researched, and is presented in the hope of informing the “serious game community”.
Resumo:
The locative project is in a condition of emergence, an embryonic state in which everything is still up for grabs, a zone of consistency yet to emerge. As an emergent practice locative art, like locative media generally, it is simultaneously opening up new ways of engaging in the world and mapping its own domain. (Drew Hemment, 2004) Artists and scientists have always used whatever emerging technologies existed at their particular time throughout history to push the boundaries of their fields of practice. The use of new technologies or the notion of ‘new’ media is neither particularly new nor novel. Humans are adaptive, evolving and will continue to invent and explore technological innovation. This paper asks the following questions: what role does adaptive and/or intelligent art play in the future of public spaces, and how does this intervention alter the relationship between theory and practice? Does locative or installation-based art reach more people, and does ‘intelligent’ or ‘smart’ art have a larger role to play in the beginning of this century? The speakers will discuss their current collaborative prototype and within the presentation demonstrate how software art has the potential to activate public spaces, and therefore contribute to a change in spatial or locative awareness. It is argued that the role and perhaps even the representation of the audience/viewer is left altered through this intervention. 1. A form of electronic imagery created by a collection of mathematically defined lines and/or curves. 2. An experiential form of art which engages the viewer both from within a specific location and in response to their intentional or unintentional input.
Resumo:
Future pervasive environments will take into consideration not only individual user’s interest, but also social relationships. In this way, pervasive communities can lead the user to participate beyond traditional pervasive spaces, enabling the cooperation among groups and taking into account not only individual interests, but also the collective and social context. Social applications in CSCW (Computer Supported Cooperative Work) field represent new challenges and possibilities in terms of use of social context information for adaptability in pervasive environments. In particular, the research describes the approach in the design and development of a context.aware framework for collaborative applications (CAFCA), utilizing user’s context social information for proactive adaptations in pervasive environments. In order to validate the proposed framework an evaluation was conducted with a group of users based on enterprise scenario. The analysis enabled to verify the impact of the framework in terms of functionality and efficiency in real-world conditions. The main contribution of this thesis was to provide a context-aware framework to support collaborative applications in pervasive environments. The research focused on providing an innovative socio-technical approach to exploit collaboration in pervasive communities. Finally, the main results reside in social matching capabilities for session formation, communication and coordinations of groupware for collaborative activities.
Resumo:
Part 3: Product-Service Systems
Resumo:
Part 21: Mobility and Logistics
Resumo:
Part 21: Mobility and Logistics
Resumo:
Part 21: Mobility and Logistics
Resumo:
Part 20: Health and Care Networks
Resumo:
Part 19: Knowledge Management in Networks
Resumo:
Part 19: Knowledge Management in Networks
Resumo:
Part 18: Optimization in Collaborative Networks