141 resultados para Clerodane diterpenes
Resumo:
The essential oil from leaves of Guarea guidonia was subjected to chromatographic separation procedures to afford nine sesquiterpenes; two of them are new eudesmane derivatives. The chemical structures of the obtained compounds were characterised by spectrometric analysis, mainly mass spectrometry and NMR.
Resumo:
Actually in the oil industry biotechnological approaches represent a challenge. In that, attention to metal structures affected by electrochemical corrosive processes, as well as by the interference of microorganisms (biocorrosion) which affect the kinetics of the environment / metal interface. Regarding to economical and environmental impacts reduction let to the use of natural products as an alternative to toxic synthetic inhibitors. This study aims the employment of green chemistry by evaluating the stem bark extracts (EHC, hydroalcoholic extract) and leaves (ECF, chloroform extract) of plant species Croton cajucara Benth as a corrosion inhibitor. In addition the effectiveness of corrosion inhibition of bioactive trans-clerodane dehydrocrotonin (DCTN) isolated from the stem bark of this Croton was also evaluated. For this purpose, carbon steel AISI 1020 was immersed in saline media (3,5 % NaCl) in the presence and absence of a microorganism recovered from a pipeline oil sample. Corrosion inhibition efficiency and its mechanisms were investigated by linear sweep voltammetry and electrochemical impedance. Culture-dependent and molecular biology techniques were used to characterize and identify bacterial species present in oil samples. The tested natural products EHC, ECF and DCTN (DMSO as solvent) in abiotic environment presented respectively, corrosion inhibition efficiencies of 57.6% (500 ppm), 86.1% (500 ppm) and 54.5% (62.5 ppm). Adsorption phenomena showed that EHC best fit Frumkin isotherm and ECF to Temkin isotherm. EHC extract (250 ppm) dissolved in a polar microemulsion system (MES-EHC) showed significant maximum inhibition efficiency (93.8%) fitting Langmuir isotherm. In the presence of the isolated Pseudomonas sp, EHC and ECF were able to form eco-compatible organic films with anti-corrosive properties
Resumo:
From the stem bark of Xylopia aromatica (Annonaceae), have been isolated two new labdane dimers as their methyl esters, together with the known compounds ent-labda-8(17),13(16),14-trien-18-oic acid, sitosterol and stigmasterol. The structures of the dimers were elucidated on the basis of detailed spectroscopic analyses. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Objectives Propolis is a honeybee product used extensively in traditional medicine for its antioxidant, anti-inflammatory, immunomodulatory and anticancer effects. Propolis exhibits a broad spectrum of biological activities because it is a complex mixture of natural substances. In this review, the antitumour effects of propolis extracts and its constituents (e. g. flavonoids, terpenes and caffeic acid phenethyl ester) are discussed.Key findings The effect of propolis on experimental carcinogenesis is discussed, as well as its possible mechanisms of action against tumours, involving apoptosis, cell cycle arrest and interference on metabolic pathways. Propolis seems to be efficient against different tumour cells both in vitro and in vivo, which suggests its potential in the development of new anticancer drugs.Summary Propolis extracts may be important economically and would allow a relatively inexpensive cancer treatment. Preclinical investigations are needed to further elucidate the benefits of propolis and its antitumour properties.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Isolou-se do extrato etanólico de galhos de Aristolochia chamissonis espatulenol, sitosterol, sitosterol-beta-D-glicosídeo, colavelool, 13-epi-2-oxo-colavelool, trans-N-p-coumaroiltiramina, alantoína, ácido aristolóquico I e aristolactama AII. As estruturas da aristolactama AII e da piperolactama A são revisadas com base em análises espectrométricas e derivatizações químicas.
Resumo:
The antiulcerogenic activity of trans-dehydrocrotonin (DHC), a nor-clerodane diterpene isolated from Croton cajucara Benth. ( Euphorbiaceae), and its subacute ( 35 days) toxicity were studied in mice and rats, respectively. For the antiulcerogenic tests, models of gastric ulcers induced in mice by ethanol/HCl or stress were used. In both models, an oral dose of DHC ( 100 mg/kg) significantly reduced (P< 0.01) the formation of gastric lesions. DHC was also tested for its ability to scavenge free radicals, but no such action was observed in rat liver mitochondria. To assess the subacute toxicity, rats were treated orally with DHC (25, 50 and 100 mg/kg) for 5 weeks. A significant increase in liver weight was observed in male and female rats at highest doses, whereas a significant reduction in plasma alkaline phosphatase and cholesterol levels and an increase in gamma glutamyl transpeptidase were observed only at the highest dose ( 100 mg/kg) in female rats. DHC caused histopathological alterations in the liver that included a turbid tumefaction, microvacuolar degeneration and nuclear alterations. Despite the beneficial antiulcerogenic activity of DHC, our results suggest that the long-term use of this compound may induce liver damage.
Resumo:
This work describes a methodology for identification of skeletal types of diterpenes based on data base with 1500 compounds isolated from Asteraceae. One program named BOTOCSYS was built with the codification of the compounds and their botanical sources. An example of identification of a new substance is given.
Resumo:
From the acetone and ethanol extracts of the tubercula of Aristolochia pubescens, two diterpene esters of aristolochic acids were isolated, together with 23 known compounds. The structures of the compounds were determined on the basis of spectroscopic analysis. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In a biological and phytochemical study on the leaves of Psychotria spectabilis Steyerm., seven compounds were isolated and identified from the CHCl3/MeOH (2:1, v/v) and MeOH extracts. Among the isolates were two diterpenes, solidagenone and deoxysolidagenone; three coumarins, coumarin, umbelliferone, and psoralene; and two flavonols, quercetin and quercetrin. Biological evaluations showed that diterpenes and coumarins exhibited antifungal activity against the filamentous fungi Cladosporium cladosporioides (Fresen) de Vries and C sphaerospermum Penzig. Solidagenone and psoralene also displayed selective cytotoxic activity against Rad 52Y mutant yeast strain of Saccharomyces cerevisiae. In this paper, the isolation, structure elucidation, and bioactivity results of these compounds are reported.
Resumo:
From a hexane extract of stems and roots of Aristolochia pubescens, the new neolignans (2S,3S,1'R,2'R)- and (2S,3S, 1'S,2'R)-2,3-dihydro-5-(1',2'-dihydroxypropyl)-2-(4-hydroxy-3-methylbenzofuran) and (2S,3S,1'R,2'R)- and (2S,3S,1'S,2'R)-2,3-dihydro-5-(1',2'-dihydroxypropyl)-2-(3,4-dimethoxyphenyl)-7-methoxy-3-methyl-benzofuran were isolated, together with the known neolignan licarin A, and its bisnor-neolignan aldehyde and acid derivatives. In addition, sitosterol, 8R,9R-oxide-beta-caryophyllene, kobusone, ent-kauran-16 alpha, 17-diol, vanillin, vanillic acid, (+)-sesamin, (+)eudesmin, and (-)-cubebin were isolated. The structures of the new compounds have been elucidated by spectroscopic methods and by chemical transformation using Mosher's acid chloride. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
This work describes the development of a new program, named SISTAX, for the expert system SISTEMAT. This program allows anyone interested in chemotaxonomy to carry out an intelligent search for organic compounds in databases through chemical structures. When coupled with can efficient encoding system, the program recognizes skeletal types and can find any substructural constraints demanded by the user. An example of an application of the program to the diterpene class found in plants is described.
Resumo:
An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T b) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1- yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T b of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T b nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T b response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T b. Copyright © 2007 Society for Neuroscience.
Resumo:
Many Chrysobalanaceae species, in special Licania and Parinari, are widely used in folk medicine to treat several diseases. This review describes some aspects of their ethnopharmacology potential, biological activities and the secondary metabolites reported so far for Chrysobalanaceae. The chemical constituents of this family include triterpenoids, diterpenoids, steroids and phenylpropanoids like flavonoids as well as chromones derivatives. © 2012 Springer Science+Business Media Dordrecht.