975 resultados para Chronic Myelogenous Leukemia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The prognostic significance of ATM mutations in chronic lymphocytic leukemia (CLL) is unclear. We assessed their impact in the context of a prospective randomized trial. PATIENTS AND METHODS: We analyzed the ATM gene in 224 patients treated on the Leukemia Research Fund Chronic Lymphocytic Leukemia 4 (LRF-CLL4) trial with chlorambucil or fludarabine with and without cyclophosphamide. ATM status was analyzed by denaturing high-performance liquid chromatography and was related to treatment response, survival, and the impact of TP53 alterations for the same patient cohort. RESULTS: We identified 36 ATM mutations in 33 tumors, 16 with and 17 without 11q deletion. Mutations were associated with advanced disease stage and involvement of multiple lymphoid sites. Patients with both ATM mutation and 11q deletion showed significantly reduced progression-free survival (median, 7.4 months) compared with those with ATM wild type (28.6 months), 11q deletion alone (17.1 months), or ATM mutation alone (30.8 months), but survival was similar to that in patients with monoallelic (6.7 months) or biallelic (3.4 months) TP53 alterations. This effect was independent of treatment, immunoglobulin heavy chain variable gene (IGHV) status, age, sex, or disease stage. Overall survival for patients with biallelic ATM alterations was also significantly reduced compared with those with ATM wild type or ATM mutation alone (median, 42.2 v 85.5 v 77.6 months, respectively). CONCLUSION: The combination of 11q deletion and ATM mutation in CLL is associated with significantly shorter progression-free and overall survival following first-line treatment with alkylating agents and purine analogs. Assessment of ATM mutation status in patients with 11q deletion may influence the choice of subsequent therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CLLU1, located at chromosome 12q22, encodes a transcript specific to chronic lymphocytic leukemia and has potential prognostic value. We assessed the value of CLLU1 expression in the LRF CLL4 randomized trial. Samples from 515 patients with chronic lymphocytic leukemia were collected immediately before the start of treatment. After RNA extraction and cDNA synthesis, CLLU1 expression was assessed by quantitative polymerase chain reaction. In total, 247 and 268 samples were identified as having low and high CLLU1 expression, respectively. The median follow-up was 88 months. High CLLU1 expression was significantly correlated with unmutated IGHV genes, ZAP-70 and CD38 positivity, and absence of 13q deletion (all r>0.2, P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence suggests that - in addition to 17p deletion - TP53 mutation is an independent prognostic factor in chronic lymphocytic leukemia (CLL). Data from retrospective analyses and prospective clinical trials show that ∼5% of untreated CLL patients with treatment indication have a TP53 mutation in the absence of 17p deletion. These patients have a poor response and reduced progression-free survival and overall survival with standard treatment approaches. These data suggest that TP53 mutation testing warrants integration into current diagnostic work up of patients with CLL. There are a number of assays to detect TP53 mutations, which have respective advantages and shortcomings. Direct Sanger sequencing of exons 4-9 can be recommended as a suitable test to identify TP53 mutations for centers with limited experience with alternative screening methods. Recommendations are provided on standard operating procedures, quality control, reporting and interpretation. Patients with treatment indications should be investigated for TP53 mutations in addition to the work-up recommended by the International workshop on CLL guidelines. Patients with TP53 mutation may be considered for allogeneic stem cell transplantation in first remission. Alemtuzumab-based regimens can yield a substantial proportion of complete responses, although of short duration. Ideally, patients should be treated within clinical trials exploring new therapeutic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PurposeTP53 mutations have been described in chronic lymphocytic leukemia (CLL) and have been associated with poor prognosis in retrospective studies. We aimed to address the frequency and prognostic value of TP53 abnormalities in patients with CLL in the context of a prospective randomized trial.Patients and MethodsWe analyzed 529 CLL samples from the LRF CLL4 (Leukaemia Research Foundation Chronic Lymphocytic Leukemia 4) trial (chlorambucil v fludarabine with or without cyclophosphamide) at the time of random assignment for mutations in the TP53 gene. TP53 mutation status was correlated with response and survival data.ResultsMutations of TP53 were found in 40 patients (7.6%), including 25 (76%) of 33 with 17p deletion and 13 (3%) of 487 without that deletion. There was no significant correlation between TP53 mutations and age, stage, IGHV gene mutations, CD38 and ZAP-70 expression, or any other chromosomal abnormality other than 17p deletion, in which concordance was high (96%). TP53 mutations were significantly associated with poorer overall response rates (27% v 83%; P <.001) and shorter progression-free survival (PFS) and overall survival (OS; 5-year PFS: 5% v 17%; 5-year OS: 20% v 59%; P <.001 for both). Multivariate analysis that included baseline clinical variables, treatment, and known adverse genetic factors confirmed that TP53 mutations have added prognostic value.ConclusionTP53 mutations are associated with impaired response and shorter survival in patients with CLL. Analysis of TP53 mutations should be performed in patients with CLL who have progressive disease before starting first-line treatment, and those with mutations should be selected for novel experimental therapies. J Clin Oncol 29: 2223-2229. (C) 2011 by American Society of Clinical Oncology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deletion of the TP53 gene on chromosome 17p13.1 is the prognostic factor associated with the shortest survival in CLL. We used array-based comparative genomic hybridisation (arrayCGH) to identify additional DNA copy number changes in peripheral blood samples from 74 LRF CLL4 trial patients, 37 with >or=5% and 37 without TP53-deleted cells. ArrayCGH reliably detected deletions on 17p, including the TP53 locus, in cases with >or=50%TP53-deleted cells detected by fluorescence in situ hybridisation, plus seven additional cases with deleted regions on 17p excluding TP53. Losses on chromosomal regions 18p and/or 20p were found exclusively in cases with >or=5%TP53-deleted cells (por=5%TP53-deleted cases (p=0.02). In particular, amplification of 2p and deletion of 6q were both more frequent. Cases with >20%TP53-deleted cells had the worst prognosis in the LRF CLL4 trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is characterized by the presence of the BCR::ABL1 fusion gene, leading to a constitutively active tyrosine kinase that drives the disease. Genomic instability is a hallmark of CML, contributing to disease progression and treatment resistance. A study identified SETD2, a histone methyltransferase, as frequently dysfunctional in advanced-phase CML, resulting in reduced trimethylation of Histone H3 at lysine 36 (H3K36Me3). This loss is associated with poor prognosis and increased genetic instability. Investigations revealed that SETD2 dysfunction is caused by post-translational modifications mediated by Aurora kinase A and MDM2, leading to proteasome-mediated degradation. Aurora kinase A phosphorylates SETD2, while MDM2 ubiquitinates it, targeting it for degradation. Inhibition of MDM2 and Aurora kinase A restored SETD2 expression and activity, suggesting potential therapeutic targets. Loss of SETD2 and H3K36Me3 impairs DNA repair mechanisms, favoring error-prone repair pathways over faithful ones, exacerbating genetic instability. Reintroduction of SETD2 into deficient cells restored DNA repair pathways, preserving genomic integrity. Analysis of CD34+ progenitor cells from CML patients showed reduced SETD2 levels compared to healthy individuals, correlating with decreased clonogenic capacity. Notably, SETD2 loss is not detectable at diagnosis but emerges during disease progression, indicating its role as an early indicator of CML advancement. Therapeutically, inhibitors targeting Aurora kinase A, MDM2, and the proteasome showed efficacy in cells expressing SETD2, particularly in those with low SETD2 levels. Proteasome inhibitors induced apoptosis and DNA damage in SETD2-deficient cells, highlighting their potential for CML treatment. In conclusion, SETD2 acts as a tumor suppressor in CML, with its dysfunction contributing to genetic instability and disease progression. Targeting the mechanisms of SETD2 loss presents promising therapeutic avenues for controlling CML proliferation and restoring genomic integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML) is a rare disease in childhood which is almost exclusively associated with bcr-abl p210 (M-bcr) rearrangements. It has been suggested that co-expression of p 190 and p210 may be a pathway of CML progression in adult patients. We report two cases of pediatric patients with a diagnosis of CML who presented co-expression of the p210 and p190 transcripts during progression to the blastic phase. The present data suggest that p190 may be a secondary event in at least some cases of childhood CML, suggesting an association with progression to a blastic crisis in these patients. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal models of autoimmune disease and case reports of patients with these diseases who have been involved in bone marrow transplants have provided important data implicating the haemopoietic stem cell in rheumatic disease pathogenesis. Animal and human examples exist for both cure and transfer of rheumatoid arthritis, systemic lupus erythematosus (SLE) and other organ-specific diseases using allogeneic haemopoietic stem cell transplantation. This would suggest that the stem cell in these diseases is abnormal and could be cured by replacement of a normal stem cell although more in vitro data are required in this area. Given the morbidity and increased mortality in some patients with severe autoimmune diseases and the increasing safety of autologous haemopoietic stem cell transplantation (HSCT), pilot studies have been conducted using HSCT in rheumatic diseases. It is still unclear whether an autologous graft will cure these diseases but significant remissions have been obtained which have provided important data for the design of randomized trials of HSCT versus more conventional therapy. Several trials are now open to accrual under the auspices of the European Bone Marrow Transplant Group/European League Against Rheumatism (EBMT/EULAR) registry. Future clinical and laboratory research will need to document the abnormalities of the stem cell of a rheumatic patient because new therapies based on gene therapy or stem cell differentiation could be apllied to these diseases. With increasing safety of allogeneic HSCT it is not unreasonable to predict cure of some rheumatic diseases in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendritic cells (DC) are now recognised as a unique leukocyte type, consisting of two or more subsets. The origins and functional inter-relationships of these cells are the subject of intense basic scientific investigation. They play important roles in initiating and directing immune responses, defending the host from pathogens and maintaining self tolerance. Fundamental studies are defining new molecules and mechanisms associated with DC function. The first methods for counting these rare blood cell populations are already providing interesting new clinical data. Indeed, abnormal DC function may contribute to deficiencies in the immune response against malignancies. Phase I trial data suggests that DC-based cancer vaccination protocols may contribute an important new biological approach to cancer therapy. Manipulation of DC to facilitate allogeneic transplantation and even to manage autoimmune disease are likely developments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this review, intratumoral drug disposition will be integrated into the wide range of resistance mechanisms to anticancer agents with particular emphasis on targeted protein kinase inhibitors. Six rules will be established: 1. There is a high variability of extracellular/intracellular drug level ratios; 2. There are three main systems involved in intratumoral drug disposition that are composed of SLC, ABC and XME enzymes; 3. There is a synergistic interplay between these three systems; 4. In cancer subclones, there is a strong genomic instability that leads to a highly variable expression of SLC, ABC or XME enzymes; 5. Tumor-expressed metabolizing enzymes play a role in tumor-specific ADME and cell survival and 6. These three systems are involved in the appearance of resistance (transient event) or in the resistance itself. In addition, this article will investigate whether the overexpression of some ABC and XME systems in cancer cells is just a random consequence of DNA/chromosomal instability, hypo- or hypermethylation and microRNA deregulation, or a more organized modification induced by transposable elements. Experiments will also have to establish if these tumor-expressed enzymes participate in cell metabolism or in tumor-specific ADME or if they are only markers of clonal evolution and genomic deregulation. Eventually, the review will underline that the fate of anticancer agents in cancer cells should be more thoroughly investigated from drug discovery to clinical studies. Indeed, inhibition of tumor expressed metabolizing enzymes could strongly increase drug disposition, specifically in the target cells resulting in more efficient therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imatinib is the standard of care for patients with advanced metastatic gastrointestinal stromal tumors (GIST), and is also approved for adjuvant treatment in patients at substantial risk of relapse. Studies have shown that maximizing benefit from imatinib depends on long-term administration at recommended doses. Pharmacokinetic (PK) and pharmacodynamic factors, adherence, and drug-drug interactions can affect exposure to imatinib and impact clinical outcomes. This article reviews the relevance of these factors to imatinib's clinical activity and response in the context of what has been demonstrated in chronic myelogenous leukemia (CML), and in light of new data correlating imatinib exposure to response in patients with GIST. Because of the wide inter-patient variability in drug exposure with imatinib in both CML and GIST, blood level testing (BLT) may play a role in investigating instances of suboptimal response, unusually severe toxicities, drug-drug interactions, and suspected non-adherence. Published clinical data in CML and in GIST were considered, including data from a PK substudy of the B2222 trial correlating imatinib blood levels with clinical responses in patients with GIST. Imatinib trough plasma levels <1100ng/mL were associated with lower rates of objective response and faster development of progressive disease in patients with GIST. These findings have been supported by other analyses correlating free imatinib (unbound) levels with response. These results suggest a future application for imatinib BLT in predicting and optimizing therapeutic response. Nevertheless, early estimates of threshold imatinib blood levels must be confirmed prospectively in future studies and elaborated for different patient subgroups.