243 resultados para Cenomanian
Resumo:
The paleoecology of Cretaceous planktic foraminifera during the Late Cenomanian to Coniacian period (~95-86 Ma) remains controversial since much of the tropical marine record is preserved as chalk and limestone with uncertain geochemical overprints. Here we present delta13C and delta18O data from sieve size fractions of monospecific samples of exceptionally well preserved planktic foraminifera recovered during Ocean Drilling Program Leg 207 (Demerara Rise, western tropical Atlantic). Our results suggest that all species studied (Hedbergella delrioensis, Heterohelix globulosa, Marginotruncana sinuosa, Whiteinella baltica) grew primarily in surface waters and did not change their depth habitat substantially during their life cycle. Comparison of size-related ontogenetic trends in delta13C in Cretaceous and modern foraminifera further suggests that detection of dinoflagellate photosymbiosis using delta13C is confounded by physiological effects during the early stages of foraminifer growth, raising doubts about previous interpretations of photosymbiosis in small foraminifera species. We propose that obligate photosymbiosis involving dinoflagellates may not have evolved until the Campanian or Maastrichtian since our survey of Cenomanian-Coniacian species does not find the delta18O and delta13C size-related trends observed in modern foraminifer-dinoflagellate symbioses.
Resumo:
Abundant Fe-Mn carbonate concretions (mainly siderite, manganosiderite, and rhodochrosite) were found in the hemipelagic claystones of Site 603 on the eastern North American continental rise. They occur as nodules, micronodules, or carbonate-replaced burrow fills and layers at a subbottom depth of between ~ 120 (Pliocene) and 1160 m (Albian-Cenomanian). In general, the Fe-Mn carbonate concretions form from CO3- produced by the microbiological degradation of organic matter in the presence of abundant Fe + or Mn + and very low S- concentrations. However, there is also some evidence for diagenetic replacement of preexisting calcite by siderite. The carbon isotope composition of diagenetic Fe-Mn carbonate nodules is determined by CO2 reduction during methanogenesis. Carbonate nodules in Cretaceous sediments at sub-bottom depths of 1085 and 1160 m have distinctly lower d13C values (- 12.2 and - 12.9 per mil) than Neogene siderites, associated with abundant biogenic methane in the pore space (-8.9 to 1.7 per mil between 330 and 780 m depth). Since no isotopic zonation could be detected within individual nodules, we assume that the isotopic composition reflects more or less geochemical conditions at the present burial depth of the carbonate nodules. Carbonates did not precipitate within the zone of sulfate reduction (approximately 0.01 to 10 m), where all of the pyrite was formed. The oxygen isotope composition indicates precipitation from seawater-derived interstitial waters. The d18O values decrease with increasing burial depth from + 5.1 to - 1.2 per mil, suggesting successively higher temperatures during carbonate formation.
Resumo:
Ocean Drilling Program (ODP) Leg 210 is one of very few deep-sea legs drilled along the eastern Canadian continental margin. Most other drilling on this margin has been carried out by the petroleum industry on the shallow-water regions of the Scotian shelf and the Grand Banks (see Doeven, 1983, for nannofossil studies). Deep Sea Drilling Project (DSDP) Leg 12 Site 111 and ODP Leg 105 Site 647 were drilled in the general vicinity of Leg 210 but recovered no appreciable Lower Cretaceous (Albian-Cenomanian) sediments. Site 111 yielded indurated limestones dated tentatively as late Albian-early Cenomanian, whereas Site 647 encountered no Albian-Cenomanian sediments. Two sites (Sites 1276 and 1277) were drilled during Leg 210 in the Newfoundland Basin with the primary objective of recovering basement rocks to elucidate the rifting history of the North Atlantic Basin. The location for Leg 210 was selected because it is conjugate to the Iberia margin, which was drilled extensively during DSDP/ODP Legs 47B, 103, 149, and 173. A secondary but equally important objective was to recover the overlying sediments with the purpose of studying the postrift sedimentation history of this margin.
Resumo:
Late Cretaceous fish debris from Demerara Rise exhibits a dramatic positive excursion of 8 e-Nd units during ocean anoxic event 2 (OAE2) that is superimposed on extremely low e-Nd(t) values (-14 to -16.5) observed throughout the rest of the studied interval. The OAE2 e-Nd excursion is the largest yet documented in marine sediments, and the majority of the shift is estimated to have occurred over <20 k.y. Low background e-Nd values on Demerara Rise are explained as the Nd isotopic signature of the South American craton, whereas eruptions of the Caribbean large igneous province or enhanced mixing of intermediate waters in the North Atlantic could have caused the excursion.
Resumo:
LECO analysis, pyrolysis assay, and bitumen and elemental analysis were used to characterize the organic matter of 23 black shale samples from Deep Sea Drilling Project Leg 93, Hole 603B, located in the western North Atlantic. The organic matter is dominantly gas-prone and/or refractory. Two cores within the Turonian and Cenomanian, however, contained significant quantities of well-preserved, hydrogen-enriched, organic matter. This material is thermally immature and represents a potential oil-prone source rock. These sediments do not appear to have been deposited within a stagnant, euxinic ocean as would be consistent with an "oceanic anoxic event." Their organic geochemical and sedimentary character is more consistent with deposition by turbidity currents originating on the continental shelf and slope.
Resumo:
The geochemical studies of Sites 534 and 391 and their comparison allow us to improve the chemical characterization of different geological formations dating from the early Callovian to the Maestrichtian along the continental margin of eastern North America. Three of the formations are favorable for the preservation of organic matter: (1) the unnamed formation (middle Callovian to Oxfordian), (2) the Blake-Bahama Formation (Berriasian to Barremian), and (3) the Hatteras Formation (Aptian to Cenomanian). The organic matter is mainly detrital, except for a few organic-rich layers where a contribution of aquatic material occurs. In these organic-rich layers, the petroleum potential is medium to good. Maturation has not quite reached the beginning of the oil window even for the deepest organic material.
Resumo:
During Ocean Drilling Program Leg 198, Sites 1207, 1208, 1212, 1213, and 1214 were drilled on Shatsky Rise, coring Lower to mid-Cretaceous successions of nannofossil chalk, porcellanite, and chert. Although recovery was poor, these sites yielded an outstanding record of calcareous nannoplankton, providing valuable data concerning the evolutionary succession and paleobiogeography of the largest Cretaceous marine habitat. Mid-Cretaceous sections (Aptian-Cenomanian) were recovered at all sites, and Site 1213 includes an apparently complete Berriasian-Hauterivian section. Biostratigraphic dating is problematic in places because of the absence or rarity of zonal fossils of both Boreal and Tethyan affinity. The majority of nannofossil assemblages are relatively typical of this age, but there are clear differences that set them apart from coeval epicontinental assemblages: for example, Lithraphidites carniolensis is common to abundant throughout and was most likely an oceanic-adapted taxon; the cold- to temperate-water species Crucibiscutum salebrosum, Repagulum parvidentatum, and Seribiscutum primitivum are entirely absent, indicating the persistence of tropical, warm surface water temperatures; and the warm-water species Hayesites irregularis is common. Most striking, however, is the virtual absence of Nannoconus and Micrantholithus, both taxa that were conspicuous and often common components of many Tethyan and Atlantic nannofloras. These forms were almost certainly neritic adapted and usually absent in deep open-ocean settings away from guyots and platforms. Other Tethyan taxa are also absent or rare and sporadically distributed (e.g., Calcicalathina oblongata, Conusphaera spp., Tubodiscus verenae, and Lithraphidites bollii), and factors related to neritic environments presumably controlled their distribution. Site 1213 also records extended Early Cretaceous ranges for species previously thought to have become extinct during the Late Jurassic (e.g., Axopodorhabdus cylindratus, Hexapodorhabdus cuvillieri, and Biscutum dorsetensis), suggesting these species became Pacific-restricted prior to their extinction. Watznaueria britannica may also have been a species with Pacific affinities before reexpansion of its biogeography in the early Aptian. One new genus (Mattiolia) and thirteen new species (Zeugrhabdotus clarus, Zeugrhabdotus petrizzoae, Helicolithus leckiei, Rhagodiscus amplus, Rhagodiscus robustus, Rhagodiscus sageri, Rhagodiscus adinfinitus, Tubodiscus bellii, Tubodiscus frankiae, Gartnerago ponticula, Haqius peltatus, Mattiolia furva, and Kokia stellata) are described from the Shatsky Rise Lower Cretaceous section.
Resumo:
A late Albian-early Cenomanian record (~103.3 to 99.0 Ma), including organic-rich deposits and a d13C increase associated with oceanic anoxic event 1d (OAE 1d), is described from Ocean Drilling Program sites 1050 and 1052 in the subtropical Atlantic. Foraminifera are well preserved at these sites. Paleotemperatures estimated from benthic d18O values average ~14°C for middle bathyal Site 1050 and ~17°C for upper bathyal Site 1052, whereas surface temperatures are estimated to have ranged from 26°C to 31°C at both sites. Among planktonic foraminifera, there is a steady balance of speciation and extinction with no discrete time of major faunal turnover. OAE 1d is recognized on the basis of a 1.2 per mill d13C increase (~100.0-99.6 Ma), which is similar in age and magnitude to d13C excursions documented in the North Atlantic and western Tethys. Organic-rich "black shales" are present throughout the studied interval at both sites. However, deposition of individual black shale beds was not synchronous between sites, and most of the black shale was deposited before the OAE 1d d13C increase. A similar pattern is observed at the other sites where OAE 1d has been recognized indicating that the site(s) of excess organic carbon burial that could have caused the d13C increase has (have) yet to be found. Our findings add weight to the view that OAEs should be chemostratigraphically (d13C) rather than lithostratigraphically defined.
Resumo:
Thirty-eight samples from DSDP Sites 549 to 551 were analyzed for major and minor components and trace element abundances. Multivariate statistical analysis of geochemical data groups the samples into two major classes: an organic-carbon- rich group (> 1% TOC) containing high levels of marine organic matter and certain trace elements (Cu, Zn, V, Ni, Co, Ba, and Cr) and an organic-carbon-lean group depleted in these components. The greatest organic and trace metal enrichments occur in the uppermost Albian to Turanian sections of Sites 549 to 551. Carbon-isotopic values of bulk carbonate for the middle Cenomanian section of Site 550 (2.35 to 2.70 per mil) and the upper Cenomanian-Turonian sections of Sites 549 (3.35 to 4.47 per mil) and 551 (3.13 to 3.72 per mil) are similar to coeval values reported elsewhere in the region. The relatively heavy d13C values from Sites 549 and 551 indicate that this interval was deposited during the global "oceanic anoxic event" that occurred at the Cenomanian/Turonian boundary. Variation in the d18O of bulk carbonate for Section 550B-18-1 of middle Cenomanian age suggests that paleosalinity and/or paleotemperature variations may have occurred concurrently with periodic anoxia at this site. Climatically controlled increases in surface-water runoff may have caused surface waters to periodically freshen, resulting in stable salinity stratification
Resumo:
The organic facies of Cenozoic sediments cored at DSDP Sites 548-551 along the Celtic Sea margin of the northern North Atlantic (Goban Spur) is dominated by terrestrially derived plant remains and charcoal. Similar organic facies also occur in the Lower and Upper Cretaceous sections at these sites. Mid-Cretaceous (uppermost Albian-Turonian) sediments at Sites 549-551, however, record two different periods of enrichment in organic material, wherein marine organic matter was mixed with terrestrial components. The earlier period is represented only in the uppermost Albianmiddle Cenomanian section at the most seaward site, 550. Here, dark laminated marly chalks rich in organic matter occur rhythmically interbedded with light-colored, bioturbated marly chalks poor in organic matter, suggesting that bottom waters alternated between oxidizing and reducing conditions. A later period of enrichment in organic material is recorded in the upper Cenomanian-Turonian sections at Sites 549 and 551 as a single, laminated black mudstone interval containing biogenic siliceous debris. It was deposited along the margin during a time of oxygen deficiency associated with upwelling-induced intensification and expansion of the mid-water oxygen-minimum layer. In both the earlier and later events, variations in productivity appear to have been the immediate cause of oxygen depletion in the bottom waters.
Resumo:
We report oxygen and carbon stable isotope analyses of foraminifers, primarily planktonic, sampled at low resolution in the Cretaceous and Paleogene sections from Sites 1257, 1258, and 1260. Data from two samples from Site 1259 are also reported. The very low resolution of the data only allows us to detect climate-driven isotopic events on the timescale of more than 500 k.y. A several million-year-long interval of overall increase in planktonic 18O is seen in the Cenomanian at Site 1260. Before and after this interval, foraminifers from Cenomanian and Turonian black shales have d18O values in the range -4.2 per mil to -5.0 per mil, suggestive of upper ocean temperatures higher than modern tropical values. The d18O values of upper ocean dwelling Paleogene planktonics exhibit a long-term increase from the early Eocene to the middle Eocene. During shipboard and postcruise processing, it proved difficult to extract well-preserved foraminifer tests from black shales by conventional techniques. Here, we report results of a test of procedures for cleaning foraminifers in Cretaceous organic-rich mudstone sediments using various combinations of soaking in bleach, Calgon/hydrogen peroxide, or Cascade, accompanied by drying, repeat soaking, or sonication. A procedure that used 100% bleach, no detergent, and no sonication yielded the largest number of clean, whole individual foraminifers with the shortest preparation time. We found no significant difference in d18O or d13C values among sets of multiple samples of the planktonic foraminifer Whiteinella baltica extracted following each cleaning procedure.
Resumo:
Samples of Lower to middle Cretaceous rocks from ODP Sites 638, 640, and 641, drilled on the Galicia continental margin in the northeast Atlantic, have been investigated by organic geochemical methods (i.e., organic carbon determination, Rock-Eval pyrolysis, kerogen microscopy, gas chromatography, and gas chromatography/mass spectrometry) to define the Organofacies types and the depositional environments of these sediments. The results of this study fit well into the general picture drawn for the depositional history of the organic matter in Cretaceous organic-carbon-rich sediments in the North Atlantic from previous DSDP investigations. During the Valanginian to Albian, terrigenous organic carbon dominated the organic matter deposited on the Galicia continental margin. Cyclic changes in total organic carbon content were probably controlled by climatic-triggered changes in the supply of terrigenous organic matter from the nearby continent. A drastic change in depositional environment must have occurred near the Cenomanian/Turonian boundary. The preservation of large amounts of marine organic carbon in these sediments was probably caused by anoxic deep-water conditions during that time, rather than high productivity. All of the primary organic matter of the sediment samples investigated is thermally immature, as indicated by very low vitrinite reflectance values.
Resumo:
Pollen, spore, and dinoflagellate cyst floras of Late Cretaceous age were found at Sites 748 (120-748C-62R through -79R) and 750 (120-750B-11W) of Ocean Drilling Program Leg 120 to the Kerguelen Plateau area in the Southern Indian Ocean. The ranges of dinocyst and sporomorph species indicate ages between the Cenomanian and Coniacian (to possibly the early Santonian). The ratio of marine/terrestrial flora elements is extremely variable, showing a trend from highly terrestrial (up to -70%) in the late Cenomanian to highly marine (up to 90%) in the Coniacian/early Santonian. Low sedimentation rates of about 3-5 cm/1000 yr were calculated for the glauconitic sediments of Turonian and Coniacian age at Site 748 (lithologic Subunit IIIB).
Resumo:
At Site 535, the four lithologic units of Cretaceous age are controlled by two types of sedimentologic facies: (1) the massive light-colored limestones or marly limestones in which the total organic carbon (TOC) content is low and the organic matter more or less oxidized and (2) laminated dark facies in which the TOC content is higher and associated with a well-preserved organic matter of Type II origin. Very little typical Type III organic matter occurs in the whole series from late Berriasian to Aptian and Cenomanian. Fluctuations from oxidizing to reducing environments of deposition are proposed to account for the variations in properties of the Type II organic matter between the different facies. Dark laminated layers are good but immature potential source rocks: petroleum potential is often higher than 2 kg HC/t of rock.
Resumo:
The organic facies of Early and middle Cretaceous sediments drilled at DSDP Site 534 is dominated by terrestrially derived plant remains and charcoal. Marine organic matter is mixed with the terrestrial components, but through much of this period was diluted by the terrestrial material. The supply of terrestrial organic matter was high here because of the nearness of the shore and high runoff promoted by a humid temperate coastal climate. Reducing conditions favored preservation of both marine and terrestrial organic matter, the terrestrial materials having reached the site mostly in turbidity currents or in the slow-moving, near-bottom nepheloid layer. An increase in the abundance of terrestrial organic matter occurred when the sea level dropped in the Valanginian and again in the Aptian-Albian, because rivers dumped more terrigenous elastics into the Basin and marine productivity was lower at these times than when sea level was high. A model is proposed to explain the predominance of reducing conditions in the Valanginian-Aptian, of oxidizing conditions in the late Aptian, and of reducing conditions in the Albian-Cenomanian. The model involves influx of oxygen-poor subsurface waters from the Pacific at times of high or rising sea level (Valanginian-Aptian, and Albian- Cenomanian) and restriction of that influx at times of low sea level (late Aptian). In the absence of a supply of oxygenpoor deep water, the bottom waters of the North Atlantic became oxidizing in the late Aptian, probably in response to development of a Mediterranean type of circulation. The influx of nutrients from the Pacific led to an increase in productivity through time, accounting for an increase in the proportion of marine organic matter from the Valanginian into the Aptian and from the Albian to the Cenomanian. Conditions were dominantly oxidizing through the Middle Jurassic into the Berriasian, with temporary exceptions when bottom waters became reducing, as in the Callovian. Mostly terrestrial and some marine organic matter accumulated during the Callovian reducing episode. When Jurassic bottom waters were oxidizing, only terrestrial organic matter was buried in the sediments, in very small amounts.