997 resultados para Catania (Italy) Regia università degli studi. Orto botanico]


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis the molecular level design of functional materials and systems is reported. In the first part, tetraphosphonate cavitand (Tiiii) recognition properties towards amino acids are studied both in the solid state, through single crystal X-ray diffraction, and in solution, via NMR and ITC experiments. The complexation ability of these supramolecular receptors is then applied to the detection of biologically remarkable N-methylated amino acids and peptides using complex dynamic emulsions-based sensing platforms. In the second part, a general supramolecular approach for surface decoration with single-molecule magnets (SMMs) is presented. The self-assembly of SMMs is achieved through the formation of a multiple hydrogen bonds architecture (UPy-NaPy complexation). Finally we explore the possibility to impart auxetic behavior to polymeric material through the introduction of conformationally switchable monomers, namely tetraquinoxaline cavitands (QxCav). Their interconversion from a closed vase conformation to an extended kite form is studied first in solution, then in polymeric matrixes via pH and tensile stimuli by UV-Vis spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this thesis is the controlled and reproducible synthesis of functional materials at the nanoscale. In the first chapter, a tuning of morphology and magnetic properties of magnetite nanoparticles is presented. It was achieved by an innovative approach, which involves the use of an organic macrocycle (calixarene) to induce the oriented aggregation of NPs during the synthesis. This method is potentially applicable to the preparation of other metal oxide NPs by thermal decomposition of the respective precursors. Products obtained, in particular the multi-core nanoparticles, show remarkable magnetic and colloidal properties, making them very interesting for biomedical applications. The synthesis and functionalisation of plasmonic Au and Ag nanoparticles is presented in the second chapter. Here, a supramolecular approach was exploited to achieve a controlled and potentially reversible aggregation between Au and Ag NPs. This aggregation phenomena was followed by UV - visible spectroscopy and dynamic light scattering. In the final chapters, the conjugation of plasmonic and magnetic functionalities was tackled through the preparation of dimeric nanostructures. Au - Fe oxide heterodimeric nanoparticles were prepared and their magnetic properties thoroughly characterised. The results demonstrate the formation of FeO (wustite), together with magnetite, during the thermal decomposition of the iron precursor. By an oxidation process that preserves Au in the dimeric structures, wustite completely disappeared, with the formation of either magnetite and / or maghemite, much better from the magnetic point of view. The plasmon resonance of Au results damped by the presence of the iron oxide, a material with high refractive index, but it is still present if the Au domain of the nanoparticles is exposed towards the bulk. Finally, remarkable hyperthermia, also in vitro, was found for these structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of a Laue lens for X and Gamma ray focusing in the energy range 60 ÷ 600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDP) are considered for the realization of a focusing system for X rays, owing to their high diffraction efficiency. In this work, a comparison of the efficiency of CDP crystals and mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. A simplified approach for calculating the integrated reflectivity of the crystals is applied. A bending technique used during this work to realize CDP crystals consists in a controlled surface damaging induced by a mechanical lapping process. A compressive strained layer of few micrometres in thickness is generated and causes the convex curvature of the damaged side of the crystal. Another new bending technique is developed and the main results are shown. The process consists on a film deposition of a selected bi-component epoxy resin on one side of crystal, made uniform in thickness by mean of a spin-coater. Choosing the speed of spin-coating, so changing the thickness of the film, a control of radius of curvature can be obtained. Moreover the possibility to combine the two bending technique to obtain CDP crystal with a stronger curvature in rather thick crystals was demonstrated. Detailed characterization of Si, and GaAs CDP crystals at low and high x-ray energies are performed on flat and bent crystals obtained with the damaging and the resin deposition technique. As expected an increase of diffraction efficiency in asymmetrical diffraction geometry in CDP crystals with respect to the flat ones is observed. On the other hand an unexpected increase of the integrated intensity in symmetrical geometry, not predicted by the theory, is observed in all the measurements performed with different set up. The experimental trend of the integrated reflectivity as a function of the radius of curvature is in a good agreement with that predicted by the theory of bent perfect crystals, so it is possible to conclude that the surface damage has a limited effect on the crystal reflectivity. A study of the integrated reflectivity in the energy range of interest (100÷350 keV) in CDP crystals realized with damaging and resin deposition technique at symmetrical and asymmetrical geometries was performed at ILL Institute. Also at these energies the diffraction efficiency of bent crystals was much larger (a 12 time increase is observed for bent crystals in asymmetrical 111 geometry) than that measured in flat crystals. The diffraction efficiency of CDP crystals realized with both techniques tends to coincide with that of flat crystals at very high energies (> 200 keV). This suggesting that also real flat perfect crystals can be considered as strongly bent or mosaic crystals at very high X ray energies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, new coordination polymers based on two different classes of synthons are presented. In addition, manganese-based metallacrowns of magnetic interest are studied, both in the solid state and in solution. Firstly, functionalized bispyrazolylmethane derivatives are employed as bridging ligands for the establishment of silver-based coordination polymers; the influence of the substituent groups and of the counterions on the supramolecular packing is also investigated. Secondly, the use of metallacrown (MC) complexes as building blocks for porous coordination polymers is discussed. The design of a new metallacrown species is presented, which shows the tendency of aggregating in the solid state to form coordination polymers. Two new coordination polymers are indeed reported, of which one is the first MC-based permanently porous coordination network ever presented. The solid resists solvent evacuation and exhibits gas uptake ability. Furthermore, the isolation and characterization of a new metallacryptate species based on manganese ions is described. The metal-rich structure comprises nine Mn(II)/Mn(III) ions and presents an inverse metallacrown core subunit that binds a μ3-O2- ion. The metallacryptate is isolated in high yields and stable in solution. Lastly, a family of 3d-4f heterometallic metallacrowns is characterized in solution by means of UV-Vis spectrophotometry and of paramagnetically shifted 1H-NMR. The lanthanide-induced shifts observed in the spectra are employed to describe the molecules behaviour in solution and are qualitatively related to the magnetic properties of the compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, phosphonate and quinoxaline cavitand have been extensively studied, highlighting their outstanding recognition properties. Their successful applications in material science and sensing open the way to new potential applications, such as border security, environmental monitoring and chiral recognition. The present thesis explores the recognition properties of phosphonate and quinoxaline cavitands towards new targets, for molecular recognition and sensing applications. Chapter 2 highlights the enantioselective behavior of phosphonate cavitands towards chiral guests in the solid state and in solution. Phosphonate cavitands were exploited for the molecular recognition of L-lactic acid (chapter 3), a widespread natural molecule which offer multiple potential applications, and a human sweat marker used for the detection of human presence (chapter 4). The second part is devoted to sensing applications of quinoxaline cavitands. Chapter 5 describes the use of QxCav for the preconcentration of drugs precursors, while chapter 6 reports the design, synthesis and grafting of a rigidified EtQxBox on a silicon wafer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La limitazione del brevetto in corso di causa è uno dei temi più caldi ed attuali del contenzioso brevettuale, a seguito dell’introduzione nel Codice della Proprietà Industriale, con la riforma dell’agosto 2010, del 3° comma dell’art. 79, a mente del quale “In un giudizio di nullità, il titolare ha facoltà di sottoporre al giudice, in ogni stato e grado del giudizio, una riformulazione delle rivendicazioni che rimanga entro i limiti del contenuto della domanda di brevetto quale inizialmente depositata e non estenda la protezione conferita dal brevetto concesso”. L’applicazione della disposizione in discorso genera una serie di interrogativi, ai quali giurisprudenza e dottrina cercano di rispondere, e determina, e sempre più determinerà, un cambiamento radicale dello svolgimento del contenzioso brevettuale, con la possibilità di un “riassetto” della privativa, anche per successivi tentativi, nella quale anche il C.T.U. è spesso (e non senza contestazioni, a questo riguardo) parte attiva, non essendo infrequente che questo offra indicazioni circa la sussistenza di un margine di validità del titolo . L’elaborato tenta, quindi, di approfondire le problematiche di natura sostanziale e procedurale che l’articolo 79, comma 3, C.P.I. solleva, ripercorrendo con l’occasione le possibili facoltà di intervento sul brevetto, sia allo stato di domanda, che a seguito di concessione, che l’ordinamento mette a disposizione dell’inventore per perfezionare la propria privativa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nel Capitolo I abbiamo osservato come la legittimazione abbia per oggetto la fonte di produzione del diritto, mentre la legalità l’atto emanato dalla fonte nell’esercizio del potere. La legittimazione è fondamento del potere, attiene alla sua titolarità e giustifica l’obbedienza e l’uso della forza. La legalità si riferisce all’esercizio del potere, regolandolo. Si è visto come «quando si esige la legittimazione del potere, si chiede che colui che lo detiene abbia il diritto di averlo. Quando si invoca la legalità del potere, si domanda che chi lo detiene lo eserciti non secondo il proprio capriccio ma in conformità di regole stabilite ed entro i limiti di queste. Il contrario del potere legittimo è il potere di fatto, il contrario del potere legale è il potere arbitrario» . Si è poi precisato che legittimazione e legalità sono i fondamenti alla base dello Stato democratico: laddove non v’è legittimazione non vi può essere neppure democrazia, distinguendo la legittimazione formale, che riguarda chi è legittimato ad agire, ad esercitare il potere, compiendo atti giuridici prescrittivi; dalla legittimazione sostanziale, che riguarda invece che cosa non può e che cosa non può non essere deciso, ossia i limiti e i vincoli imposti all’esercizio del potere . La legittimazione è però presente in tutte le forme di Stato, tanto in quelli autoritari, quanto in quelli democratici. Ciò che distingue tra autoritarietà e democraticità dello Stato è il tipo di atto attraverso il quale si manifesta la legittimazione del potere. Il potere autoritario riceve la propria legittimazione attraverso atti di fede, quello democratico con atti di fiducia. Gli atti di fede possono solo essere spezzati, rotti. Al contrario, gli atti di fiducia possono essere rinnovati o revocati, e pertanto hanno bisogno di norme legali che ne regolino il funzionamento. In tal senso, modelli autoritari e democratici differiscono ulteriormente: nei primi, legittimato il potere, è legittimo tutto ciò che di esso è manifestazione; si può dire che la legittimazione resta tutta assorbita nella legalità. Diversamente, nei modelli democratici, è necessario vi siano norme che disciplinano quell’atto di fiducia legittimante il potere, ma non solo, ve ne devono anche essere altre che regolino l’esercizio del potere stesso. Non solo, ma la legittimazione per essere democratica deve avvenire periodicamente e ha bisogno di un pubblico attivo, informato, consapevole dei suoi diritti, perché è la democrazia ad aver bisogno di un pubblico, di un consenso sociale, che attraverso la propria legittimazione del potere controlli chi quel potere è chiamato ad esercitarlo. Si comprende, allora, perché il principio di legalità in sé e per sé non può garantire la democrazia. Esso garantisce la conformità alla legge, la non arbitrarietà nell’esercizio del potere, ma nulla dice su chi quella legge ha il potere di emanarla, e infatti l’art. 1 del Codice Rocco, durante il fascismo, non garantiva certo le libertà democratiche. Allo stesso modo, la legittimazione sociale in sé e per sé non garantisce la democrazia, perché anche forme di Stato autoritarie, plebiscitarie, hanno un consenso sociale che le sorregge e legittima tutto ciò che chi esercita il potere decide di fare, almeno fino a quando continuano ad avervi fede. Nel Capitolo II abbiamo mostrato come, attraverso la riserva di legge, la Costituzione garantisca entrambi i fondamenti democratici: quello della legalità nell’esercizio della potestà punitiva e quello della legittimazione del Parlamento che la esercita. Dunque, legalità e legittimazione periodica sono un binomio indissolubile, perché possa aversi uno Stato democratico; inoltre è necessario che l’esercizio del potere avvenga “in pubblico” e che l’opinione pubblica abbia una coscienza critica che le consenta di valutare e orientare le proprie scelte. È stato poi sostenuto nel Capitolo III come lo stesso Parlamento non possa – in democrazia – essere libero di sanzionare con pena tutto ciò che vuole, ma sia vincolato direttamente dalla Costituzione rigida e almeno indirettamente dal consenso sociale, che dovrebbe impedire che sia trasformato in illecito penale tutto ciò per la collettività non dovrebbe essere sanzionato come tale. In questo l’informazione, attraverso i mezzi di comunicazione, rappresenta un postulato necessario per ogni modello democratico in grado di influenzare i cittadini nella percezione della realtà. In quest’ultimo Capitolo IV, infine, abbiamo messo in luce come una distorta percezione della realtà, da parte del consenso sociale, alteri “patologicamente” la legittimazione democratica, facendole perdere ogni sua funzione di garanzia nel delimitare il potere politico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Un figlio con un Disturbo dello Spettro Autistico, caratterizzato da gravi difficoltà nelle relazioni, nei comportamenti e nella comunicazione, costringe tutto il sistema familiare a gestire un notevole stress dovuto alla gestione quotidiana di una patologia così complessa. Per questi motivi, i genitori necessitano di un sostegno il più possibile personalizzato rispetto alle caratteristiche del loro contesto familiare. Per fare questo sarebbe importante individuare quali siano i parametri correlati ai livelli di stress nei familiari di pazienti con autismo e che potrebbero avere un’influenza sul benessere familiare. Lo scopo di questo studio è quello di valutare quali caratteristiche di personalità, stili di coping e capacità di gestire le emozioni possano essere in relazione con la reattività individuale alle situazioni di stress, valutata attraverso alcuni correlati biologici, quali il livello di cortisolo (l’ormone dello stress) e la variabilità della frequenza cardiaca. L’ottica di ricerca applicata fa sì che gli obiettivi ultimi di questo lavoro siano anche quelli di diminuire l’accesso ai servizi per questi soggetti, considerando il fatto che progetti individualizzati di sostegno genitoriale costituiscono un fattore protettivo rispetto a conseguenze fisiche e psicologiche di disagio se implementati tenendo conto della variabilità individuale rispetto alle caratteristiche sopra citate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cocrystallization of the molecule of interest could be a smart and dainty way to tune solubility properties of solid phases leaving the molecule chemically unchanged, hence it is widely investigated by companies and by solid state scientists. Despite of this extremely high interest towards cocrystallization no particular emphasis has been paid to using it as a means to stabilize liquid molecules. In this work we define a benchmark of relevant molecules for human health that have been combined with suitable partners according to crystal engineering methods in order to obtain cocrystals. Solubility properties in different solvents of cocrystals new solid phases have been tested and compared to the properties of the drugs. A further approach to deal with volatile compounds is molecular confinement inside molecular scaffold. Nowadays metal organic frameworks (MOFs) are studied in many fields ranging from catalysis to trapping or storage of gases, such as hydrogen, methane, CO2 thanks to their extremely high porosity. Our goal is to confine liquid guests of biological relevance inside MOF pores, monitoring via X-ray diffraction, spectroscopy and thermal analysis the stabilization of the molecule of interest inside the cavities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dal principio di individuazione al processo di costituzione degli individui, la connessione tra metafisica e fisica, da un lato, e tra fisica e politica, dall'altro, è dimostrata attraverso un'analisi lessicale e concettuale dei termini «individuo (individuum)» e «relazione (relatio, ens rationis, ens imaginationis)» nella filosofia di Baruch/Bento/Benedictus Spinoza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi si propone di dimostrare la presenza e l'utilizzo nel pensiero di Niccolò Machiavelli di categorie e concettualizzazioni derivate dalla riflessione aristotelica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanomedicine is a new branch of medicine, based on the potentiality and intrinsic properties of nanomaterials. Indeed, the nanomaterials ( i.e. the materials with nano and under micron size) can be suitable to different applications in biomedicine. The nanostructures can be used by taking advantage of their properties (for example superparamagnetic nanoparticles) or functionalized to deliver the drug in a specific target, thanks the ability to cross biological barriers. The size and the shape of 1D-nanostructures (nanotubes and nanowires) have an important role on the cell fate: their morphology plays a key role on the interaction between nanostructure and the biological system. For this reason the 1D nanostructure are interesting for their ability to mime the biological system. An implantable material or device must therefore integrate with the surrounding extracellular matrix (ECM), a complex network of proteins with structural and signaling properties. Innovative techniques allow the generation of complex surface patterns that can resemble the structure of the ECM, such as 1D nanostructures. NWs based on cubic silicon carbide (3C-SiC), either bare (3C-SiC NWs) or surrounded by an amorphous shell (3C-SiC/SiO2 core/shell NWs), and silicon oxycarbide nanowires (SiOxCy NWs) can meet the chemical, mechanical and electrical requirements for tissue engineering and have a strong potential to pave the way for the development of a novel generation of implantable nano-devices. Silicon oxycarbide shows promising physical and chemical properties as elastic modulus, bending strength and hardness, chemical durability superior to conventional silicate glasses in aggressive environments and high temperature stability up to 1300 °C. Moreover, it can easily be engineered through functionalization and decoration with macro-molecules and nanoparticles. Silicon carbide has been extensively studied for applications in harsh conditions, as chemical environment, high electric field and high and low temperature, owing to its high hardness, high thermal conductivity, chemical inertness and high electron mobility. Also, its cubic polytype (3C) is highly biocompatible and hemocompatible, and some prototypes of biomedical applications and biomedical devices have been already realized starting from 3C-SiC thin films. Cubic SiC-based NWs can be used as a biomimetic biomaterial, providing a robust and novel biocompatible biological interface . We cultured in vitro A549 human lung adenocarcinoma epithelial cells and L929 murine fibroblast cells over core/shell SiC/SiO2, SiOxCy and bare 3C-SiC nanowire platforms, and analysed the cytotoxicity, by indirect and direct contact tests, the cell adhesion, and the cell proliferation. These studies showed that all the nanowires are biocompatible according to ISO 10993 standards. We evaluated the blood compatibility through the interaction of the nanowires with platelet rich plasma. The adhesion and activation of platelets on the nanowire bundles, assessed via SEM imaging and soluble P-selectin quantification, indicated that a higher platelet activation is induced by the core/shell structures compared to the bare ones. Further, platelet activation is higher with 3C-SiC/SiO2 NWs and SiOxCyNWs, which therefore appear suitable in view of possible tissue regeneration. On the contrary, bare 3C-SiC NWs show a lower platelet activation and are therefore promising in view of implantable bioelectronics devices, as cardiovascular implantable devices. The NWs properties are suitable to allow the design of a novel subretinal Micro Device (MD). This devices is based on Si NWs and PEDOT:PSS, though the well know principle of the hybrid ordered bulk heterojunction (OBHJ). The aim is to develop a device based on a well-established photovoltaic technology and to adapt this know-how to the prosthetic field. The hybrid OBHJ allows to form a radial p–n junction on a nanowire/organic structure. In addition, the nanowires increase the light absorption by means of light scattering effects: a nanowires based p-n junction increases the light absorption up to the 80%, as previously demonstrated, overcoming the Shockley-Queisser limit of 30 % of a bulk p-n junction. Another interesting employment of these NWs is to design of a SiC based epicardial-interacting patch based on teflon that include SiC nanowires. . Such contact patch can bridge the electric conduction across the cardiac infarct as nanowires can ‘sense’ the direction of the wavefront propagation on the survival cardiac tissue and transmit it to the downstream surivived regions without discontinuity. The SiC NWs are tested in terms of toxicology, biocompatibility and conductance among cardiomyocytes and myofibroblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades, an increasing interest in the research field of wide bandgap semiconductors was observed, mostly due to the progressive approaching of silicon-based devices to their theoretical limits. 4H-SiC is an example among these, and is a mature compound for applications. The main advantages offered 4H-SiC in comparison with silicon are an higher breakdown field, an higher thermal conductivity, a higher operating temperature, very high hardness and melting point, biocompatibility, but also low switching losses in high frequencies applications and lower on-resistances in unipolar devices. Then, 4H-SiC power devices offer great performance improvement; moreover, they can work in hostile environments where silicon power devices cannot function. Ion implantation technology is a key process in the fabrication of almost all kinds of SiC devices, owing to the advantage of a spatially selective doping. This work is dedicated to the electrical investigation of several differently-processed 4H-SiC ion- implanted samples, mainly through Hall effect and space charge spectroscopy experiments. It was also developed the automatic control (Labview) of several experiments. In the work, the effectiveness of high temperature post-implant thermal treatments (up to 2000°C) were studied and compared considering: (i) different methods, (ii) different temperatures and (iii) different duration of the annealing process. Preliminary p + /n and Schottky junctions were also investigated as simple test devices. 1) Heavy doping by ion implantation of single off-axis 4H-SiC layers The electrical investigation is one of the most important characterization of ion-implanted samples, which must be submitted to mandatory post-implant thermal treatment in order to both (i) recover the lattice after ion bombardment, and (ii) address the implanted impurities into lattice sites so that they can effectively act as dopants. Electrical investigation can give fundamental information on the efficiency of the electrical impurity activation. To understand the results of the research it should be noted that: (a) To realize good ohmic contacts it is necessary to obtain spatially defined highly doped regions, which must have conductivity as low as possible. (b) It has been shown that the electrical activation efficiency and the electrical conductivity increase with the annealing temperature increasing. (c) To maximize the layer conductivity, temperatures around 1700°C are generally used and implantation density high till to 10 21 cm -3 . In this work, an original approach, different from (c), is explored by the using very high annealing temperature, around 2000°C, on samples of Al + -implant concentration of the order of 10 20 cm -3 . Several Al + -implanted 4H-SiC samples, resulting of p-type conductivity, were investigated, with a nominal density varying in the range of about 1-5∙10 20 cm -3 and subjected to two different high temperature thermal treatments. One annealing method uses a radiofrequency heated furnace till to 1950°C (Conventional Annealing, CA), the other exploits a microwave field, providing a fast heating rate up to 2000°C (Micro-Wave Annealing, MWA). In this contest, mainly ion implanted p-type samples were investigated, both off-axis and on-axis <0001> semi-insulating 4H-SiC. Concerning p-type off-axis samples, a high electrical activation of implanted Al (50-70%) and a compensation ratio below 10% were estimated. In the work, the main sample processing parameters have been varied, as the implant temperature, CA annealing duration, and heating/cooling rates, and the best values assessed. MWA method leads to higher hole density and lower mobility than CA in equivalent ion implanted layers, resulting in lower resistivity, probably related to the 50°C higher annealing temperature. An optimal duration of the CA treatment was estimated in about 12-13 minutes. A RT resistivity on the lowest reported in literature for this kind of samples, has been obtained. 2) Low resistivity data: variable range hopping Notwithstanding the heavy p-type doping levels, the carrier density remained less than the critical one required for a semiconductor to metal transition. However, the high carrier densities obtained was enough to trigger a low temperature impurity band (IB) conduction. In the heaviest doped samples, such a conduction mechanism persists till to RT, without significantly prejudice the mobility values. This feature can have an interesting technological fall, because it guarantee a nearly temperature- independent carrier density, it being not affected by freeze-out effects. The usual transport mechanism occurring in the IB conduction is the nearest neighbor hopping: such a regime is effectively consistent with the resistivity temperature behavior of the lowest doped samples. In the heavier doped samples, however, a trend of the resistivity data compatible with a variable range hopping (VRH) conduction has been pointed out, here highlighted for the first time in p-type 4H-SiC. Even more: in the heaviest doped samples, and in particular, in those annealed by MWA, the temperature dependence of the resistivity data is consistent with a reduced dimensionality (2D) of the VRH conduction. In these samples, TEM investigation pointed out faulted dislocation loops in the basal plane, whose average spacing along the c-axis is comparable with the optimal length of the hops in the VRH transport. This result suggested the assignment of such a peculiar behavior to a kind of spatial confinement into a plane of the carrier hops. 3) Test device the p + -n junction In the last part of the work, the electrical properties of 4H-SiC diodes were also studied. In this case, a heavy Al + ion implantation was realized on n-type epilayers, according to the technological process applied for final devices. Good rectification properties was shown from these preliminary devices in their current-voltage characteristics. Admittance spectroscopy and deep level transient spectroscopy measurements showed the presence of electrically active defects other than the dopants ones, induced in the active region of the diodes by ion implantation. A critical comparison with the literature of these defects was performed. Preliminary to such an investigation, it was assessed the experimental set up for the admittance spectroscopy and current-voltage investigation and the automatic control of these measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PhD activity described in this Thesis was focused on the study of metal-oxide wide-bandgap materials, aiming at fabricating new optoelectronic devices such as solar-blind UV photodetectors, high power electronics, and gas sensors. Photocurrent spectroscopy and DC photocurrent time evolution were used to investigate the performance of prototypes under different atmospheres, temperatures and excitation wavelengths (or dark conditions). Cathodoluminescence, absorption spectroscopy, XRD and SEM were used to assess structural, morphologic, electrical and optical properties of materials. This thesis is divided into two main sections, each describing the work done on a different metal-oxide semiconductor. 1) MOVPE-grown Ga2O3 thin films for UV solar-blind photodetectors and high power devices The semiconducting oxides, among them Ga2O3, have been employed for several decades as transparent conducting oxide (TCO) electrodes for fabrication of solar cells, displays, electronic, and opto-electronic devices. The interest was mainly confined to such applications, as these materials tend to grow intrinsically n-type, and attempts to get an effective p-type doping has consistently failed. The key requirements of TCO electrodes are indeed high electrical conductivity and good transparency, while crystallographic perfection is a minor issue. Furthermore, for a long period no high-quality substrates and epi-layers were available, which in turn impeded the development of a truly full-oxide electronics. Recently, Ga2O3 has attracted renewed interest, as large single crystals and high-quality homo- and hetero-epitaxial layers became available, which paved the way to novel application areas. Our research group spent the last two years in developing a low temperature (500-700°C) MOVPE growth procedure to obtain thin films of Ga2O3 on different substrates (Dept. of Physics and IMEM-CNR at UNIPR). We obtained a significant result growing on oriented sapphire epitaxial films of high crystalline, undoped, pure phase -Ga2O3 (hexagonal). The crystallographic properties of this phase were investigated by XRD, in order to clarify the lattice parameters of the hexagonal cell. First design and development of solar blind UV photodetectors based on -phase was carried out and the optoelectronic performance is evaluated by means of photocurrent spectroscopy. The UV-response is adequately fast and reliable to render this unusual phase a subject of great interest for future applications. The availability of a hexagonal phase of Ga2O3 stable up to 700°C, belonging to the same space group of gallium nitride, with high crystallinity and tunable electrical properties, is intriguing in view of the development of nitride-based devices, by taking advantage of the more favorable symmetry and epitaxial relationships with respect to the monoclinic β-phase. In addition, annealing at temperatures higher than 700°C demonstrate that the hexagonal phase converts totally in the monoclinic one. 2) ZnO nano-tetrapods: charge transport mechanisms and time-response in optoelectronic devices and sensors Size and morphology of ZnO at the nanometer scale play a key role in tailoring its physical and chemical properties. Thanks to the possibility of growing zinc oxide in a variety of different nanostructures, there is a great variety of applications, among which gas sensors, light emitting diodes, transparent conducting oxides, solar cells. Even if the operation of ZnO nanostructure-based devices has been recently demonstrated, the mechanisms of charge transport in these assembly is still under debate. The candidate performed an accurate investigation by photocurrent spectroscopy and DC-photocurrent time evolution of electrical response of both single-tetrapod and tetrapod-assembly devices. During the research done for this thesis, a thermal activation energy enables the performance of samples at high temperatures (above about 300°C). The energy barrier is related to the leg-to-leg interconnection in the assembly of nanotetrapods. Percolation mechanisms are responsible for both the very slow photo-response (minutes to hours or days) and the significant persistent photocurrent. Below the bandgap energy, electronic states were investigated but their contribution to the photocurrent are two-three order of magnitude lower than the band edge. Such devices are suitable for employ in photodetectors as well as in gas sensors, provided that the mechanism by which the photo-current is generated and gas adsorption on the surface modify the conductivity of the material are known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examines three different kinds of socio-political rewritings of Greek and Roman tragedies – Sarah Kane’s “Phaedra’s Love”, Tony Harrison’s “Prometheus”, and Martin Crimp’s “Cruel and Tender” – written, staged or screened in Britain (and, more precisely, England) between 1996 and 2004. Offering close readings of these re-visionary appropriations, this dissertation analyses some of the innumerable and unexpected forms that ancient tragedy can assume today. In particular, it explores how three talented British authors have subverted the conventions of the noblest literary and dramatic genre in order to (re)write contemporaneity in ways that oscillate between the personal and the public, the local and the global, the national and the transnational.