934 resultados para Carlsbergfondet (Copenhagen, Denmark)
Resumo:
This presentation will explore the role that social acceptance of onshore wind can play in understanding and progressing the low carbon transition in Europe. Although this is commonly perceived as arising simply from the overall level of renewable energy generated (and ‘dirty’ energy displaced), its significance goes well beyond this as it helps us understand some of the key issues facing the electricity sector as a social-technical system. As such it is not only a matter of delivering the necessary infrastructure, but requires the long term mediation of complex multi-governmental arrangements involving a very wide range of actors. The interests of these actors engage hugely different timescales, geographic scales of concern and rationalities that make the arena of social acceptance a cauldron of complexity, mediating between overlapping and incompatible concerns. The presentation will briefly review the nature of some of these relationships and discuss what this means for how we conceive and act on the social acceptance of wind, and what this means for the long term low carbon transition
Resumo:
High impedance metasurfaces (HIMSs) formed by interwoven conductor arrays are proposed. Bandwidth comparable with that of the basic square patches is achieved at an order of magnitude smaller unit cells. The presented structures are apt for small mobile terminals and low frequency applications.
Resumo:
A high impedance metasurface (HIMS) composed of the arrays of intertwined planar spirals on thin (~0.1λ) ferrite-dielectric substrate is proposed. The HIMS exhibits fractional bandwidth in excess of 10% and excellent angular and polarisation stability of the circular polarised waves at oblique incidence.
Resumo:
In this paper, the processing and characterization of Polyamide 6 (PA6) / graphite nanoplatelets
(GNPs) composites is reported. PA6/GNPs composites were prepared by melt-mixing using an
industrial, co-rotating, intermeshing, twin-screw extruder. A bespoke screw configuration was used
that was designed in-house to enhance nanoparticle dispersion into a polymer matrix. The effects of
GNPs type (xGnP® M-5 and xGnP® C-500), GNPs content, and extruder screw speed on the bulk
properties of the PA6/GNPs nanocomposites were investigated. Results show a considerable
improvement in the thermal and mechanical properties of PA6/GNPs composites, as compared with
the unfilled PA6 polymer. An increase in crystallinity (%Xc) with increasing GNPs content, and a
change in shape of the crystallization exotherms (broadening) and melting endotherms, both suggest a
change in the crystal type and perfection. An increase in tensile modulus of as much as 376% and
412% was observed for PA6/M-5 xGnP® and PA6/C-500 xGnP® composites, respectively, at filler
contents of 20wt%. The enhancement of Young’s modulus and yield stress can be attributed to the
reinforcing effect of GNPs and their uniform dispersion in the PA6 matrix. The rheological response
of the composite resembles that of a ‘pseudo-solid’, rather than a molten liquid, and analysis of the
rheological data indicates that a percolation threshold was reached at GNPs contents of between 10–
15wt%. The electrical conductivity of the composite also increased with increasing GNPs content,
with an addition of 15wt% GNPs resulting in a 6 order-of-magnitude increase in conductivity. The
electrical percolation thresholds of all composites were between 10–15wt%.
Resumo:
A detailed study of bi-material composites, using meshless methods (MMs), is presented in this paper. Firstly, representative volume elements (RVEs) for different bi-material combinations are analysed by the element-free Galerkin (EFG) method in order to confirm the effective properties of heterogeneous material through homogenization. The results are shown to be in good agreement with experimental results and those obtained using the finite element method (FEM) which required a higher node density. Secondly, a functionally graded material (FGM), with a crack, is analysed using the EFG method. This investigation was motivated by the possibility of replacing the distinct fibrematrix interface with a FGM interface. Finally, an illustrative example showing crack propagation, in a two-dimension micro-scale model of a SiC/Al composite is presented.
Combining draping and infusion models into a complete process model for complex composite structures
Resumo:
In this work we demonstrate the synthesis of a TiO2/PEDOT:PSS nanocomposite material in aqueous solution through atmospheric pressure direct current (DC) plasma processing at room temperature. The dispersion of the TiO2 nanoparticles is enhanced after microplasma processing, and TiO2/polymer hybrid nanoparticles with a distinct core shell structure have been obtained. We have observed increased TiO2/PEDOT:PSS nanocomposite electrical conductivity due to microplasma processing. The improvement in nanocomposite properties is due to the enhanced dispersion and stability in liquid polymer of microplasma treated TiO2 nanoparticles. Both plasma induced surface charge and nanoparticle surface termination with specific plasma chemical species are thought to provide an enhanced barrier to nanoparticle agglomeration and promote nanoparticle-polymer bonding, which is expected to have a significant benefit in materials processing with inorganic nanoparticles for wide range of applications.