1000 resultados para CO stripping
Resumo:
The residence time distribution (RTD) is a crucial parameter when treating engine exhaust emissions with a Dielectric Barrier Discharge (DBD) reactor. In this paper, the residence time of such a reactor is investigated using a finite element based software: COMSOL Multiphysics 4.3. Non-thermal plasma (NTP) discharge is being introduced as a promising method for pollutant emission reduction. DBD is one of the most advantageous of NTP technologies. In a two cylinder co-axial DBD reactor, tubes are placed between two electrodes and flow passes through the annuals between these barrier tubes. If the mean residence time increases in a DBD reactor, there will be a corresponding increase in reaction time and consequently, the pollutant removal efficiency can increase. However, pollutant formation can occur during increased mean residence time and so the proportion of fluid that may remain for periods significantly longer than the mean residence time is of great importance. In this study, first, the residence time distribution is calculated based on the standard reactor used by the authors for ultrafine particle (10-500 nm) removal. Then, different geometrics and various inlet velocities are considered. Finally, for selected cases, some roughness elements added inside the reactor and the residence time is calculated. These results will form the basis for a COMSOL plasma and CFD module investigation.
Resumo:
Since 2007 Kite Arts Education Program (KITE), based at Queensland Performing Arts Centre (QPAC), has been engaged in delivering a series of theatre-based experiences for children in low socio-economic primary schools in Queensland. The artist in residence (AIR) project titled Yonder includes performances developed by the children with the support and leadership of teacher artists from KITE for their community and parents/carers,supported by a peak community cultural institution. In 2009,Queensland Performing Arts Centre partnered with Queensland University of Technology (QUT) Creative Industries Faculty (Drama) to conduct a three-year evaluation of the Yonder project to understand the operational dynamics, artistic outputs and the educational benefits of the project. This paper outlines the research findings for children engaged in the Yonder project in the interrelated areas of literacy development and social competencies. Findings are drawn from six iterations of the project in suburban locations on the edge of Brisbane city and in regional Queensland.
Resumo:
Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) have been used to compare samples of YBa2Cu3O7 (YBCO) synthesised by the solid-state method and a novel co-precipitation technique. XRD results indicate that YBCO prepared by these two methods are phase pure, however the Raman and SEM results show marked differences between these samples.
Resumo:
A co-precipitation process is utilized to manufacture Y2Cu2O5 precursor powders. Upon calcination at high temperatures, such as 800 degrees C, the co-precipitated powder transforms to Y2Cu2O5. By selective variation of calcination parameters, grain-growth can be controlled to yield different sized Y2Cu2O5 powder, including sub-micron average sizes. ICP analysis, X-ray diffraction, electron microscopy, a.c. magnetic susceptibility and FT Raman are used to characterize phase development, morphology and purity of the powders.
Resumo:
A co-precipitation process for large-scale manufacture of bismuth-based HTSC powders has been demonstrated. Powders manufactured by this process have a high phase purity and precisely reproducible stoichiometry. Controlled time and temperature variations are used to convert precursors to HTSC compounds and to obtain specific particle-size distributions. The process has been demonstrated for a variety of compositions in the BSCCO system. Electron microscopy X-ray diffraction, inductively coupled plasma spectroscopy and magnetic-susceptibility measurements are used to characterize the powders.
Resumo:
With the overwhelming increase in the amount of texts on the web, it is almost impossible for people to keep abreast of up-to-date information. Text mining is a process by which interesting information is derived from text through the discovery of patterns and trends. Text mining algorithms are used to guarantee the quality of extracted knowledge. However, the extracted patterns using text or data mining algorithms or methods leads to noisy patterns and inconsistency. Thus, different challenges arise, such as the question of how to understand these patterns, whether the model that has been used is suitable, and if all the patterns that have been extracted are relevant. Furthermore, the research raises the question of how to give a correct weight to the extracted knowledge. To address these issues, this paper presents a text post-processing method, which uses a pattern co-occurrence matrix to find the relation between extracted patterns in order to reduce noisy patterns. The main objective of this paper is not only reducing the number of closed sequential patterns, but also improving the performance of pattern mining as well. The experimental results on Reuters Corpus Volume 1 data collection and TREC filtering topics show that the proposed method is promising.
Resumo:
This paper aims to inform design strategies for smart space technology to enhance libraries as environments for co-working and informal social learning. The focus is on understanding user motivations, behaviour, and activities in the library when there is no programmed agenda. The study analyses gathered data over five months of ethnographic research at ‘The Edge’ – a bookless library space at the State Library of Queensland in Brisbane, Australia, that is explicitly dedicated to co-working, social learning, peer collaboration, and creativity around digital culture and technology. The results present five personas that embody people’s main usage patterns as well as motivations, attitudes, and perceived barriers to social learning. It appears that most users work individually or within pre-organised groups, but usually do not make new connections with co-present, unacquainted users. Based on the personas, four hybrid design dimensions are suggested to improve the library as a social interface for shared learning encounters across physical and digital spaces. The findings in this paper offer actionable knowledge for managers, decision makers, and designers of technology-enhanced library spaces and similar collaboration and co-working spaces.
Resumo:
Co-creativity has become a significant cultural and economic phenomenon. Media consumers have become media producers. This book offers a rich description and analysis of the emerging participatory, co-creative relationships within the videogames industry. Banks discusses the challenges of incorporating these co-creative relationships into the development process. Drawing on a decade of research within the industry, the book gives us valuable insight into the continually changing and growing world of video games.
Resumo:
This mathematics education research provides significant insights for the teaching of decimals to children. It is well known that decimals is one of the most difficult topics to learn and teach. Annette’s research is unique in that it focuses not only on the cognitive, but also on the affective and conative aspects of learning and teaching of decimals. The study is innovative as it includes the students as co-constructors and co-researchers. The findings open new ways of thinking for educators about how students cognitively process decimal knowledge, as well as how students might develop a sense of self as a learner, teacher and researcher in mathematics.
'Information in context' : co-designing workplace structures and systems for organizational learning
Resumo:
With the aim of advancing professional practice through better understanding how to create workplace contexts that cultivate individual and collective learning through situated 'information in context' experiences, this paper presents insights gained from three North American collaborative design (co-design) implementations. In the current project at the Auraria Library in Denver, Colorado, USA, participants use collaborative information practices to redesign face-to-face and technology-enabled communication, decision making, and planning systems. Design processes are described and results-to-date described, within an appreciative framework which values information sharing and enables knowledge creation through shared leadership.
Resumo:
The use of intelligent transport systems is proliferating across the Australian road network, particularly on major freeways. New technology allows a greater range of signs and messages to be displayed to drivers. While there has been a long history of human factors analyses of signage, no evaluation has been conducted on this novel, sometimes dynamic, signage or potential interactions when co-located. The purpose of this driving simulator study was to investigate drivers’ behavioural changes and comprehension resulting from the co-location of Lane Use Management Systems with static signs and (Enhanced) Variable Message Signs on Queensland motorways. A section of motorway was simulated, and nine scenarios were developed which presented a combination of signage cases across levels of driving task complexity. Two higher-risk road user groups were targeted for this research on an advanced driving simulator: older (65+ years, N=21) and younger (18-22 years, N=20) drivers. Changes in sign co-location and task complexity had small effect on driver comprehension of the signs and vehicle dynamics variables, including difference with the posted speed limit, headway, standard deviation of lane keeping and brake jerks. However, increasing the amount of information provided to drivers at a given location (by co-locating several signs) increased participants’ gaze duration on the signs. With co-location of signs and without added task complexity, a single gaze was over 2s for more than half of the population tested for both groups, and up to 6 seconds for some individuals.
Resumo:
Infrared spectra of NO, NO2 and CO adsorbed on Rh/Al2O3 have been recorded in order to identify the role of surface Rh-NO+ species in the reactions of NO and CO on Rh surfaces. Rh-NO+ was generated by thermally activated adsorption of NO, adsorption of NO on oxidised Rh or by adsorption of NO2. The latter also gave adsorbed nitrate on both Rh and the alumina support. In the presence of CO, Rh-NO+ acted as a precursor of the Rh(CO)(NO) mixed surface complex of CO and NO.
Resumo:
FTIR spectra are reported of CO adsorbed on silica-supported copper catalysts prepared from copper(II) acetate monohydrate. Fully oxidised catalyst gave bands due to CO on CuO, isolated Cu2+ cations on silica and anion vacancy sites in CuO. The highly dispersed CuO aggregated on reduction to metal particles which gave bands due to adsorbed CO characteristic of both low-index exposed planes and stepped sites on high-index planes. Partial surface oxidation with N2O or H2O generated Cu+ adsorption sites which were slowly reduced to Cu° by CO at 300 K. Surface carbonate initially formed from CO was also slowly depleted with time with the generation of CO2. The results are consistent with adsorbed carbonate being an intermediate in the water-gas shift reaction of H2O and CO to H2 and CO2.
Resumo:
FTIR spectra are reported of CO, CO2, H2 and H2O on silica-supported potassium, copper and potassium-copper catalysts. Adsorption of CO on a potassium/silica catalyst resulted in the formation of complexed CO moieties. Whereas exposure of CO2 to the same catalyst produced bands ascribed to CO2 -, bidentate carbonate and complexed CO species. Fully oxidised copper/silica surfaces gave bands due to CO on CuO and isolated Cu2+ cations on silica. Addition of potassium to this catalyst removed a peak attributed to CO adsorption on isolated Cu2+ cations and red-shifted the maximum ascribed to CO adsorbed on CuO. For a reduced copper/silica catalyst bands due to adsorbed CO on both high and low index planes were red-shifted by 10 cm-1 in the presence of potassium, although the strength of the Cu - CO bond did not appear to be increased concomitantly. An explanation in terms of an electrostatic effect between potassium and adsorbed CO is forwarded. A small maximum at ca. 1510 cm-1 for the reduced catalyst increased substantially upon exposing CO to a reoxidised promoted catalyst. Correspondingly, CO2 adsorption allowed the identification of two distinct carboxylate species, one of which was located at an interfacial site between copper and potassium oxide. Carboxylate species reacted with hydrogen at 295 K, on a reduced copper surface, to produce predominantly unidentate formate on potassium. In contrast no interaction was detected on a reoxidised copper catalyst at 295 K until a fraction of the copper surface was in a reduced state. Furthermore the interaction of polar water molecules with carboxylate species resulted in a perturbation of this structure which gave lower C----O stretching frequencies.
Resumo:
The reaction of CO2 and H2 with ZnO/SiO2 catalyst at 295 K gave predominantly hydrogencarbonate on zinc oxide and a small quantity of formate was evolved after heating at 393 K. Elevation of the reaction temperature to 503 K enhanced the rate of formation of zinc formate species. Significantly these formate species decomposed at 573 K almost entirely to CO2 and H2. Even after exposure of CO2-H2 or CO-CO2-H2 mixtures to highly defected ZnO/SiO2 catalyst, the formate species produced still decomposed to give CO2 and H2. It was concluded that carboxylate species which were formed at oxygen anion vacancies on polar Zn planes were not significantly hydrogenated to formate. Consequently it was proposed that the non-polar planes on zinc oxide contained sites which were specific for the synthesis of methanol. The interaction of CO2 and H2 with reduced Cu/ZnO/SiO2 catalyst at 393 K gave copper formate species in addition to substantial quantities of formate created at interfacial sites between copper and zinc oxide. It was deduced that interfacial formate species were produced from the hydrogenation of interfacial bidentate carbonate structures. The relevance of interfacial formate species in the methanol synthesis reaction is discussed. Experiments concerning the reaction of CO2-H2 with physical mixtures of Cu/SiO2 and ZnO/SiO2 gave results which were simply characteristic of the individual components. By careful consideration of previous data a detailed proposal regarding the role of spillover hydrogen is outlined. Admission of CO to a gaseous CO2-H2 feedstock resulted in a considerably diminished amount of formate species on copper. This was ascribed to a combination of over-reduction of the surface and site-blockage.