734 resultados para CLATHRATE-HYDRATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attenuations of different types of gas hydrate cementation in fluid-saturated porous solids are discussed. The factors affecting estimation of gas hydrate and free gas saturation are analyzed. It is suggested that porosity of sediment, the P wave velocity model and methods of calculating elastic modulus are key factors in the estimation of gas hydrate and free gas saturations. Attenuation of gas hydrate-bearing sediment is closely related with the cementation types of gas hydrate. Negative anomalies of quality factors indicate that gas hydrate deposits away from grain as part of fluid. Positive anomalies of the quality factors indicate that gas hydrate contacts with solid and changes the elastic modulus of matrix. Low frequency velocity and high frequency velocity models are used to estimate gas hydrate and free gas saturation in the Blake Ridge area according to the well log data of the hole 995 in ODP leg 164. The gas hydrate saturation obtained by low frequency velocity is 10% similar to 20% of the pore space and free gas saturation is 0.5% similar to 1% of the pore space. The gas hydrate saturation obtained by high frequency velocity is 5% similar to 10% of the pore space and free gas saturation is 1% similar to 2% of the pore space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To look for gas hydrate, 22 multi-channel and 3 single-channel seismic lines on the East China Sea (ECS) shelf slope and at the bottom of the Okinawa Trough were examined. It was found that there was indeed bottom simulating reflector (BSR) occurrence, but it is very rare. Besides several BSRs, a gas seepage was also found. As shown by the data, both the BSR and gas seepage are all related with local geological structures, such as mud diapir, anticline, and fault-controlled graben-like structure. However, similar structural "anomalies" are quite common in the tectonically very active Okinawa Trough region, but very few of them have developed BSR or gas seepage. The article points out that the main reason is probably the low concentration of organic carbon of the sediment in this area. It was speculated that the rare occurrence of gas hydrates in this region is governed by structure-controlled fluid flow. Numerous faults and fractures form a network of high-permeability channels in the sediment and highly fractured igneous basement to allow fluid circulation and ventilation. Fluid flow in this tectonic environment is driven primarily by thermal buoyancy and takes place on a wide range of spatial scales. The fluid flow may play two roles to facilitate hydrate formation: to help gather enough methane into a small area and to modulate the thermal regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title coordination polymer, {[Ni3Na(OH)(C9H3O6)(2)( H2O)(11)] center dot 1.5H(2)O}(n), is built up from three independent Ni-II ions and one Na-I cation bridged by benzene-2,4,6-tricarboxylate ( BTC) ligands and water molecules. Three Ni-II ions are bridged by three bidentate carboxylate groups of three BTC ligands, two aqua ligands and one OH- unit, to form a trinuclear metal cluster. The Na-I cation is bonded to the Ni-II cluster by two bridging water molecules. One of the three BTC ligands bridges neighbouring clusters into one-dimensional chains, which are further connected through a complex hydrogen-bonding scheme, forming a three-dimensional suprastructure. The title complex is isomorphous with the previously reported Co-II complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The X-ray crystal structures of two lamotrigine derivatives (I) 2-methyl, 3-amino, 5-imino-6-(2, 3-dichlorophenyl)-1,2,4-triazine, C10H9Cl2N5, as the hemi hydrate and (II) 2-methyl,3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine, C10H10Cl2N5, as the isethionate-water solvate, have been carried out at liquid nitrogen temperature. A detailed comparison of the two structures is given. Both are monoclinic and centrosymmetric, with (I) in space group C2/c, and (II) in space group P2(1)/n. For (I) the unit cell dimensions are a = 19.5466(10), b = 7.5483(4), c = 15.7861(8) angstrom, beta = 91.458(3)degrees, volume = 2328.4(2) angstrom(3), Z = 8, density = 1.590 Mg/m(3); for (II). For (II) the unit cell dimensions are a = 6.0566(2), b = 11.0084(4) c = 23.9973(9) angstrom, beta = 92.587(3)degrees, volume = 1598.35(10) angstrom(3), Z = 4, density = 1.597 Mg/m(3). For (I) final R indices [I > 2sigma(I)] are R1 = 0.0356, wR2 = 0.0782 and R indices (all data) are R1 = 0.0424, wR2 = 0.0817. For (II) final R indices [I > 2sigma(I)] are R1 = 0.0380, wR2 = 0.0871 and R indices (all data) R1 = 0.0558, wR2 = 0.0949. Both structures have a molecule of water of crystallization and (II) also includes a solvated CH3SO3. Comparisons are made between the two structures. Structure (I) is very unusual in having a = NH group at position C5' on the triazine ring. No other examples of this particular substitution, which is usually -NH2, have been reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main success of my thesis has been to establish the mechanism by which antifreeze proteins (AFPs) bind irreversibly to ice crystals, and hence prevent their growth. AFPs organize ice-like water on their ice-binding site, which then merges and freezes with the quasi-liquid layer of ice. This was revealed from studying the exceptionally large (ca. 1.5-MDa) Ca 2+-dependent AFP from the Antarctic bacterium Marinomonas primoryensis (MpAFP). The 34-kDa antifreeze- active region of MpAFP was predicted to fold as a novel Ca 2+-binding β-helix. Site-directed mutagenesis confirmed the model and demonstrated that its ice-binding site (IBS) consisted of solvent-exposed Thr and Asx parallel arrays on the Ca 2+-binding turns. The X-ray crystal structure of the antifreeze region was solved to a resolution of 1.7 Å. Two of the four molecules within the unit cell of the crystal had portions of their IBSs freely exposed to solvent. Identical clathrate-like cages of water molecules were present on each IBS. These waters were organized by the hydrophobic effect and anchored to the protein via hydrogen bonds. They matched the spacing of water molecules in an ice lattice, demonstrating that anchored clathrate waters bind AFPs to ice. This mechanism was extended to other AFPs including the globular type III AFP from fishes. Site-directed mutagenesis and a modified ice-etching technique demonstrated this protein uses a compound ice-binding site, comprised of two flat and relatively hydrophobic surfaces, to bind at least two planes of ice. Reinvestigation of several crystal structures of type III AFP identified anchored clathrate waters on the solvent-exposed portion of its compound IBS that matched the spacing of waters on the primary prism plane of ice. Ice nucleation proteins (INPs), which can raise the temperature at which ice forms in solution to just slightly below 0oC, have the opposite effect to AFPs. A novel dimeric β-helical model was proposed for the INP produced by the bacterium Pseudomonas borealis. Molecular dynamics simulations showed that INPs are also capable of ordering water molecules into an ice- like lattice. However, their multimerization brings together sufficient ordered waters to form an ice nucleus and initiate freezing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1-Alkyl-3-methylimidazolium containing ionic liquids with hexafluorophosphate, bis(trifyl)imide, tetrafluoroborate, and chloride anions form liquid clathrates when mixed with aromatic hydrocarbons; in the system 1,3-dimethylimidazolium hexafluorophosphate-benzene, the aromatic solute could be trapped in the solid state forming a crystalline 2: 1 inclusion compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toluene dioxygenase-catalysed cis-dihydroxylation of phenols has led to the discovery of new enantiopure cyclohexenone cis-diol, o-quinol dimer and phenol hydrate metabolites having synthetic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasound promotes the reduction of hexacyanoferrate(III) by thiosulfate ions mediated by RuO2 . xH(2)O under diffusion-controlled conditions. There is a strong correlation between the measured first-order rate constant and the absorbance of the dispersion, which, in turn, is closely related to the specific surface area of the catalyst. The enhancement in rate with ultrasonic irradiation appears to be largely associated with the dispersive action of the ultrasound on the aggregated particles of RuO2 . xH(2)O. The rate of reaction increases with increasing %duty cycle and ultrasonic intensity. The measured overall activation energies for the reaction with and without ultrasound, i.e. 18 +/- 1 and 20 +/- 1 kJ mol(-1), respectively, are very similar to those expected for a diffusion-controlled reaction. The homogeneous reaction is not promoted by ultrasound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of reduction of hexacyanoferrate(III) by excess thiosulfate, mediated by RuO2.xH2O, are investigated. At high concentrations of S2O32- (0.1 mol dm-3) the kinetics of Fe(CN)63- reduction are first order with respect to [Fe(CN)63-] and [RuO2.xH2O] and independent of [Fe(CN)64-], [S2O32-] and [S4O62-]. At relatively low concentrations Of S2O32- (0.01 mol dm-3) and in the presence of appreciable concentrations of Fe(CN)64- and S4O62- (0.01 mol dm-3) the kinetics depend directly upon [Fe(CN)63-] and [RuO2.xH2O] and inversely upon [Fe(CN)64-]. Both sets of kinetics can be rationalised using an electrochemical model of redox catalysts in which a reversible reduction reaction [Fe(CN)63- + e- --> Fe(CN)64-] is coupled to an irreversible oxidation reaction (s2O32- - e- --> 1/2S4O62-), by a dispersion of RuO2.xH2O microelectrodes. At high concentrations Of S2O32- this model predicts that the kinetics of Fe(CN)63- reduction are controlled by the rate of diffusion of the Fe(CN)63- ions to the RuO2.xH2O particles. The kinetics observed at low concentrations of S2O32- are predicted by the electrochemical model, assuming that the Tafel slope for the oxidation Of S2O32- to S4O62- on the RuO2.xH2O particles is 56.4 mV decade-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of the oxidation of Ru(bpy)32+ to Ru(bpy)33+ by T13+ ions, catalyzed by a dispersion of RuO2-xH2O in 3 mol dm-3 HNO3, are reported as a function of [Ru(bpy)32+], [Tl3+], [Tl+], [RuO2.xH2O], and temperature. The kinetics of Ru(bpy)32+ oxidation fit an electrochemical model of redox catalysis involving electron transfer between the two electrochemically reversible redox couples, i.e. Ru(bpy)33+/Ru(bpy)32+ and Tl3+/Tl+, mediated by the dispersion of microelectrode particles of RuO2.xH2O. In this model, the rate of reaction is assumed to be controlled by the diffusion of Ru(bpy)32+ toward, and Ru(bpy)33+ away from, the catalyst particles. The Arrhenius activation energy for the catalyzed reaction is 25.9 +/- 0.7 kJ mol-1, and the changes in enthalpy and entropy for the reaction are 36 +/- 2 kJ mol-1 and 127 +/- 6 J mol-1 K-1, respectively. This work describes a rare example of reversible heterogeneous redox catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of a kinetic study of the oxidative dissolution of ruthenium dioxide hydrate to ruthenium tetroxide by periodate ions, IO4-, in acidic solution are described. The kinetics of dissolution give a good fit to a 'soft-centre' model in which the particles of RuO2.xH2O are assumed to be monodispersed, spherical but inhomogeneous in composition, comprising a difficult-to-corrode outer shell and a more easy-to-corrode inner core. In this work metaperiodate appears to act as a two-electron oxidant. The observed kinetics fit a reaction scheme in which the rate-determining step is the reaction between a surface site and an adsorbed IO4 ion and there is competitive adsorption by any IO3- present. In the absence and presence of an excess of IO3- ions, the overall activation energy for the corrosion reaction was determined to be 38 +/- 2 and 54 +/- 4 kJ mol-1, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of oxidation of water to oxygen by MnO4-, mediated by thermally activated ruthenium dioxide hydrate, has been studied. The rate of catalysis is 0.8 order with respect to the surface concentration of MnO4- (which in turn appears to fit a Langmuir adsorption isotherm) and proportional to the catalyst concentration, but is independent of the concentration of manganese(II) ions. The catalysed reaction appears to have an activation energy of 50 +/- 1 kJ mol-1. These observed kinetics are readily rationalised using an electrochemical model in which the catalyst particles act as microelectrodes providing a medium for electron transfer between the highly irreversible oxidation of water to O2 and the highly irreversible reduction of MnO4- to Mn2+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of oxidative dissolution of RuO2 .xH2O to RuO4 by Ce(iv) ions are studied. Under conditions of a low [Ce(iv)] : [RuO2 .xH2O] ratio (e.g. 0.35 : 1) and a high background concentration of Ce(III) ions (which impede dissolution) the initial reduction of Ce(iv) ions is due to charging of the RuO2 .xH2O microelectrode particles. The initial rate of charging depends directly upon [RuO2 .xH2O] and has an activation energy of 25 +/- 5 kJ mol-1 Under conditions of a high [Ce(iv] : [RuO2 .xH2O] (e.g. 9 : 1) and a low background [Ce(III] the reduction of Ce(iv) ions is almost totally associated with the dissolution of RuO2 .xH2O to RuO4, i.e. not charging. The kinetics of dissolution obey an electrochemical model in which the reduction of Ce(iv) ions and the oxidation of RuO2 .xH2O to RuO4 are assumed to be highly reversible and irreversible processes, respectively, mediated by dissolving the microelectrode particles of RuO2 .xH2O. Assuming this electrochemical model, from an analysis of the kinetics of dissolution the activation energy for this process was estimated to be 39 +/- 5 kJ mol-1 and the Tafel slope for RuO2 .xH2O corrosion was calculated to be 15 mV per decade. The mechanistic implications of these results are discussed.