990 resultados para CFD wall film
Resumo:
There has been a boom in Australian horror movie production in recent years. Daybreakers (2010), Wolf Creek (2005), Rogue (2007), Undead (2003), Black Water (2008), and Storm Warning (2006) among others, have all experienced varying degrees of popularity, mainstream visibility, and cult success in worldwide horror markets. While Aussie horror’s renaissance is widely acknowledged in industry literature, there is limited research into the extent of the boom and the dynamics of production. Consequently, there are few explanations for why and how this surge has occurred. This paper argues that the recent growth in Australian horror films has been driven by intersecting international market forces, domestic financing factors, and technological change. In so doing, it identifies two distinct tiers of Australian horror film production: ‘mainstream’ and ‘underground’ production; though overlap between these two tiers results in ‘high-end indie’ films capable of cinema release. Each tier represents the high and low-ends of Australian horror film production, each with different financing, production, and distribution models.
Resumo:
There is a need in industry for a commodity polyethylene film with controllable degradation properties that will degrade in an environmentally neutral way, for applications such as shopping bags and packaging film. Additives such as starch have been shown to accelerate the degradation of plastic films, however control of degradation is required so that the film will retain its mechanical properties during storage and use, and then degrade when no longer required. By the addition of a photocatalyst it is hoped that polymer film will breakdown with exposure to sunlight. Furthermore, it is desired that the polymer film will degrade in the dark, after a short initial exposure to sunlight. Research has been undertaken into the photo- and thermo-oxidative degradation processes of 25 ìm thick LLDPE (linear low density polyethylene) film containing titania from different manufacturers. Films were aged in a suntest or in an oven at 50 °C, and the oxidation product formation was followed using IR spectroscopy. Degussa P25, Kronos 1002, and various organic-modified and doped titanias of the types Satchleben Hombitan and Hunstsman Tioxide incorporated into LLDPE films were assessed for photoactivity. Degussa P25 was found to be the most photoactive with UVA and UVC exposure. Surface modification of titania was found to reduce photoactivity. Crystal phase is thought to be among the most important factors when assessing the photoactivity of titania as a photocatalyst for degradation. Pre-irradiation with UVA or UVC for 24 hours of the film containing 3% Degussa P25 titania prior to aging in an oven resulted in embrittlement in ca. 200 days. The multivariate data analysis technique PCA (principal component analysis) was used as an exploratory tool to investigate the IR spectral data. Oxidation products formed in similar relative concentrations across all samples, confirming that titania was catalysing the oxidation of the LLDPE film without changing the oxidation pathway. PCA was also employed to compare rates of degradation in different films. PCA enabled the discovery of water vapour trapped inside cavities formed by oxidation by titania particles. Imaging ATR/FTIR spectroscopy with high lateral resolution was used in a novel experiment to examine the heterogeneous nature of oxidation of a model polymer compound caused by the presence of titania particles. A model polymer containing Degussa P25 titania was solvent cast onto the internal reflection element of the imaging ATR/FTIR and the oxidation under UVC was examined over time. Sensitisation of 5 ìm domains by titania resulted in areas of relatively high oxidation product concentration. The suitability of transmission IR with a synchrotron light source to the study of polymer film oxidation was assessed as the Australian Synchrotron in Melbourne, Australia. Challenges such as interference fringes and poor signal-to-noise ratio need to be addressed before this can become a routine technique.
Resumo:
Typically a film producer expects the director and actors to 'do their job' within a scheduled timeframe. Rather than expecting the creative principals to just deliver, a production model can be tailored to help this creative team produce successful outcomes. This research paper contrasts alternative production models with a traditional (or standard) production and presents possibilities for producers to emphasise the collaborative potential for their production.
Resumo:
The field was the curation of new media within large-scale exhibition practice for Chinese audiences. The context was improved understandings of the intertwining cultures and concerns of Chinese and Western contemporary practitioners. The research uncovered a range of connective and dialogical concerns around cultural displacement and re-identification, germane to the chosen group of media artists. The methodology was principally practice-led. The research brought together 31 practitioners from Asian, European and Australasian cultures within a major highly visible Chinese exhibition context. By identifying and promoting a distinct commonality within difference amongst the diverse practitioners the exhibition successfully activated a global dialogue that incorporated environmental and cultural identity agendas within a major Chinese educational and public context - thereby promulgating cross-cultural understanding, despite the often oppressive shadowing of domestic political processes. The project was developed under the international aegis of IDA Projects (established since 1999) and was substantially supported by the Fine Art Department of the Beijing Film Academy, QUT Precincts and Platform China Art Institute. It built upon IDA’s 2005 inaugural new media exhibition at the ‘Today Art’ Museum in Beijing – now recognised as one of the leading art spaces in China. Numerous peer-reviewed grants won included the Australian Embassy in China and the Australia China Council. Through subsequent invitations from external curators the work then traveled in a range of reconfigured formats to other major venues including the Block Gallery at QUT, Brisbane and ZAIM Artspace, Yokohama Japan. A major catalogue with authoritative essays was also printed.
Resumo:
Screen industries around the globe are evolving. While technological change has been slower to take effect upon the Australian film industry than other creative sectors such as music and publishing, all indications suggest that local screen practices are in a process of fundamental change. Fragmenting audiences, the growth of digital video, distribution and exhibition, the potential for entirely new forms of cultural expression, the proliferation of multi-platforms, and the importance of social networking and viral marketing in promoting products, are challenging traditional approaches to ‘film making’. Moreover, there has been a marked transition in government policy rationales and funding models in recent years, resulting in the most significant overhaul of public finance structures for the film industry in almost 20 years. Film, Cinema, Screen evaluates the Australian film industry’s recent development – particularly in terms of Australian feature film and television series production; it also advocates new approaches to Australian film, and address critical issues around how screen production globally is changing, with implications for local screen industries.
Resumo:
Despite recent developments in fixed-film combined biological nutrients removal (BNR) technology; fixed-film systems (i.e., biofilters), are still at the early stages of development and their application has been limited to a few laboratory-scale experiments. Achieving enhanced biological phosphorus removal in fixed-film systems requires exposing the micro-organisms and the waste stream to alternating anaerobic/aerobic or anaerobic/anoxic conditions in cycles. The concept of cycle duration (CD) as a process control parameter is unique to fixed-film BNR systems, has not been previously investigated, and can be used to optimise the performance of such systems. The CD refers to the elapsed time before the biomass is re-exposed to the same environmental conditions in cycles. Fixed-film systems offer many advantages over suspended growth systems such as reduced operating costs, simplicity of operation, absence of sludge recycling problems, and compactness. The control of nutrient discharges to water bodies, improves water quality, fish production, and allow water reuse. The main objective of this study was to develop a fundamental understanding of the effect of CD on the transformations of nutrients in fixed-film biofilter systems subjected to alternating aeration I no-aeration cycles A fixed-film biofilter system consisting of three up-flow biofilters connected in series was developed and tested. The first and third biofilters were operated in a cyclic mode in which the biomass was subjected to aeration/no-aeration cycles. The influent wastewater was simulated aquaculture whose composition was based on actual water quality parameters of aquacuture wastewater from a prawn grow-out facility. The influent contained 8.5 - 9:3 mg!L a111monia-N, 8.5- 8.7 mg/L phosphate-P, and 45- 50 mg!L acetate. Two independent studies were conducted at two biofiltration rates to evaluate and confirm the effect of CD on nutrient transformations in the biofilter system for application in aquaculture: A third study was conducted to enhance denitrification in the system using an external carbon- source at a rate varying from 0-24 ml/min. The CD was varied in the range of0.25- 120 hours for the first two studies and fixed at 12 hours for the third study. This study identified the CD as an important process control parameter that can be used to optimise the performance of full-scale fixed-film systems for BNR which represents a novel contribution in this field of research. The CD resulted in environmental conditions that inhibited or enhanced nutrient transformations. The effect of CD on BNR in fixed-film systems in terms of phosphorus biomass saturation and depletion has been established. Short CDs did not permit the establishment of anaerobic activity in the un-aerated biofilter and, thus, inhibited phosphorus release. Long CDs resulted in extended anaerobic activity and, thus, resulted in active phosphorus release. Long CDs, however, resulted in depleting the biomass phosphorus reservoir in the releasing biofilter and saturating the biomass phosphorus reservoir in the up-taking biofilter in the cycle. This phosphorus biomass saturation/depletion phenomenon imposes a practical limit on how short or long the CD can be. The length of the CD should be somewhere just before saturation or depletion occur and for the system tested, the optimal CD was 12 hours for the biofiltration rates tested. The system achieved limited net phosphorus removal due to the limited sludge wasting and lack of external carbon supply during phosphorus uptake. The phosphorus saturation and depletion reflected the need to extract phosphorus from the phosphorus-rich micro-organisms, for example, through back-washing. The major challenges of achieving phosphorus removal in the system included: (I) overcoming the deterioration in the performance of the system during the transition period following the start of each new cycle; and (2) wasting excess phosphorus-saturated biomass following the aeration cycle. Denitrification occurred in poorly aerated sections of the third biofilter and generally declined as the CD increased and as the time progressed in the individual cycle. Denitrification and phosphorus uptake were supplied by an internal organic carbon source, and the addition of an external carbon source (acetate) to the third biofilter resulted in improved denitrification efficiency in the system from 18.4 without supplemental carbon to 88.7% when the carbon dose reached 24 mL/min The removal of TOC and nitrification improved as the CD increased, as a result of the reduction in the frequency of transition periods between the cycles. A conceptual design of an effective fixed-film BNR biofilter system for the treatment of the influent simulated aquaculture wastewater was proposed based on the findings of the study.