942 resultados para CELL-ADHESION MOLECULE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers’ disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly “nanodisc” structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/ Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a bioactive lipopeptide that combines the capacity to promote the adhesion and subsequent self-detachment of live cells, using template-cell-environment feedback interactions. This self-assembling peptide amphiphile comprises a diene-containing hexadecyl lipid chain (C16e) linked to a matrix metalloprotease-cleavable sequence, Thr-Pro-Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln, and contiguous with a cell-attachment and signalling motif, Arg-Gly-Asp-Ser. Biophysical characterisation revealed that the PA self-assembles into 3 nm diameter spherical micelles above a critical aggregation concentration (cac). In addition, when used in solution at 5–150 nM (well below the cac), the PA is capable of forming film coatings that provide a stable surface for human corneal fibroblasts to attach and grow. Furthermore, these coatings were demonstrated to be sensitive to metalloproteases expressed endogenously by the attached cells, and consequently to elicit the controlled detachment of cells without compromising their viability. As such, this material constitutes a novel class of multi-functional coating for both fundamental and clinical applications in tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to investigate the effect of probiotic immobilization onto wheat grains, both wet and freeze dried, on the adhesion properties of the probiotic cells and make comparisons with wet and freeze dried free cells. Lactobacillus casei ATCC 393 and Lactobacillus plantarum NCIMB 8826 were used as model probiotic strains. The results showed satisfactory adhesion ability of free cells to a monolayer of Caco-2 cells (> 1000 CFU/100 Caco-2 cells for wet cells). Cell immobilization resulted in a significant decrease in adhesion, for both wet and freeze dried formulations, most likely because immobilized cells did not have direct access to the Caco-2 cells, but it still remained in adequate levels (> 100 CFU/100 Caco-2 cells for wet cells). No clear correlation could be observed between cell adhesion and the hydrophobicity of the bacterial cells, measured by the hexadecane adhesion assay. Most notably, immobilization enhanced the monolayer integrity of Caco-2 cells, demonstrated by a more than 2-fold increase in transepithelial electrical resistance (TEER) compared to free cells. SEM micrographs ascertained the adhesion of both immobilized and free cells to the brush border microvilli. Finally, the impact of the food matrix on the adhesion properties of probiotic bacteria and on the design of novel functional products is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background—Increased production of reactive oxygen species (ROS) throughout the vascular wall is a feature of cardiovascular disease states, but therapeutic strategies remain limited by our incomplete understanding of the role and contribution of specific vascular cell ROS to disease pathogenesis. To investigate the specific role of endothelial cell (EC) ROS in the development of structural vascular disease, we generated a mouse model of endothelium-specific Nox2 overexpression and tested the susceptibility to aortic dissection after angiotensin II (Ang II) infusion. Methods and Results—A specific increase in endothelial ROS production in Nox2 transgenic mice was sufficient to cause Ang II–mediated aortic dissection, which was never observed in wild-type mice. Nox2 transgenic aortas had increased endothelial ROS production, endothelial vascular cell adhesion molecule-1 expression, matrix metalloproteinase activity, and CD45+ inflammatory cell infiltration. Conditioned media from Nox2 transgenic ECs induced greater Erk1/2 phosphorylation in vascular smooth muscle cells compared with wild-type controls through secreted cyclophilin A (CypA). Nox2 transgenic ECs (but not vascular smooth muscle cells) and aortas had greater secretion of CypA both at baseline and in response to Ang II stimulation. Knockdown of CypA in ECs abolished the increase in vascular smooth muscle cell Erk1/2 phosphorylation conferred by EC conditioned media, and preincubation with CypA augmented Ang II–induced vascular smooth muscle cell ROS production. Conclusions—These findings demonstrate a pivotal role for EC-derived ROS in the determination of the susceptibility of the aortic wall to Ang II–mediated aortic dissection. ROS-dependent CypA secretion by ECs is an important signaling mechanism through which EC ROS regulate susceptibility of structural components of the aortic wall to aortic dissection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the expression pattern of cell adhesion molecules associated to transendothelial migration of leukocytes in different lung`s vascular compartments after administration of a magnetic fluid sample containing maghemite nanoparticles surface-coated with meso-2,3-dimercaptosuccinic acid. The analyses were conducted in mice 4 and 12 h after endovenous administration of the magnetic fluid in control mice. Firstly, the migratory activity of leukocytes after magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration was confirmed using broncho-alveolar lavage and light microscopy. Then, the expression of cell adhesion molecules in the lung`s vascular compartments was investigated by immunofluorescence microscopy of frozen sections, using antibodies against L-selectin, P-selectin, E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1. L- and P-selectin showed similar pattern of expression in the pulmonary vasculature in animals treated with magnetic fluid and in the control group. In contrast, macrophage antigen-1 and leukocyte function associated antigen-1 were found in capillary only in animals treated with magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration. In addition, after magnetic fluid administration E-selectin was found in post-capillary sites. Our findings demonstrated that magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration exhibits modulation effects on expression patterns of E-selectin, macrophage antigen-1, and leukocyte function associated antigen-1 in the lung`s vascular compartments. These findings are very important in a strategy to reduce the potential toxicity of magnetic fluid surface-coated with meso-2,3-dimercaptosuccinic acid administration for medical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to air pollutants such as formaldehyde (FA) leads to inflammation, oxidative stress and immune-modulation in the airways and is associated with airway inflammatory disorders such as asthma. The purpose of our study was to investigate the effects of exposure to FA on the allergic lung inflammation. The hypothesized link between reactive oxygen species and the effects of FA was also studied. To do so, male Wistar rats were exposed to FA inhalation (1%, 90 min daily) for 3 days. and subsequently sensitized with ovalbumin (OVA)-alum by subcutaneous route One week later the rats received another OVA-alum injection by the same route (booster). Two weeks later the rats were challenged with aerosolized OVA. The OVA challenge of rats upon FA exposure induced an elevated release of LTB(4). TXB(2), IL-1 beta, IL-6 and VEGF in lung cells, increased phagocytosis and lung vascular permeability, whereas the cell recruitment into lung was reduced. FA inhalation induced the oxidative burst and the nitration of proteins in the lung Vitamins C, E and apocynin reduced the levels of LTB(4) in BAL-cultured cells of the FA and FA/OVA groups, but Increased the cell influx into the lung of the FA/OVA rats. In OVA-challenged rats, the exposure to FA was associated to a reduced lung endothelial cells expression of intercellular cell adhesion molecule 1 (ICAM-1) In conclusion, our findings suggest that FA down regulate the cellular migration into the lungs after an allergic challenge and increase the ability of resident lung cells likely macrophages to generate inflammatory mediators, explaining the increased lung vascular permeability Our data are indicative that the actions of FA involve mechanisms related to endothelium-leukocyte interactions and oxidative stress, as far as the deleterious effects of this air pollutant on airways are concerned. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic patients have increased susceptibility to infection, which may be related to impaired inflammatory response observed in experimental models of diabetes, and restored by insulin treatment. The goal of this study was to investigate whether insulin regulates transcription of cytokines and intercellular adhesion molecule 1 (ICAM-1) via nuclear factor-kappa B (NF-kappa B) signaling pathway in Escherichia coli LIPS-induced lung inflammation. Diabetic male Wistar rats (alloxan, 42 mg/kg, iv., 10 days) and controls were instilled intratracheally with saline containing LPS (750 mu g/0.4 mL) or saline only. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU, s.c.) 2 h before LIPS. Analyses performed 6 h after LPS included: (a) lung and mesenteric lymph node IL-1 beta, TNF-alpha, IL-10, and ICAM-1 messenger RNA (mRNA) were quantified by real-time reverse transcriptase-polymerase chain reaction; (b) number of neutrophils in the bronchoalveolar lavage (BAL) fluid, and concentrations of IL-1 beta, TNF-alpha, and IL-10 in the BAL were determined by the enzyme-linked immunosorbent assay; and (c) activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were quantified by Western blot analysis. Relative to controls, diabetic rats exhibited a reduction in lung and mesenteric lymph node IL-1 beta (40%), TNF-alpha (similar to 30%), and IL-10 (similar to 40%) mRNA levels and reduced concentrations of IL-1 beta (52%), TNF-alpha (62%), IL-10 (43%), and neutrophil counts (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were almost suppressed in diabetic rats. Treatment of diabetic rats with insulin completely restored mRNA and protein levels of these cytokines and potentiated lung ICAM-1 mRNA levels (30%) and number of neutrophils (72%) in the BAL. Activation of NF-kappa B p65 subunit and phosphorylation of I-kappa B alpha were partially restored by insulin treatment. In conclusion, data presented suggest that insulin regulates transcription of proinflammatory (IL-1 beta, TNF-alpha) and anti-inflammatory (IL-10) cytokines, and expression of ICAM-1 via the NF-kappa B signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulmonary involvement in leptospirosis has been increasingly reported in the last 20 years, being related to the severity and mortality of the disease. The pathogenesis of pulmonary hemorrhage in leptospirosis is not understood. Lung endothelial cells have been proposed as targets in the pathogenesis of lung involvement in leptospirosis through the activation of Toll-like receptor 2 or the complement system, which stimulates the release of cytokines that lead to the activation of adhesion molecules. The aim of this study was to investigate the involvement of immune pathways and of the intercellular and vascular cell adhesion molecules (intercellular adhesion molecule and vascular cell adhesion molecule, respectively) in the lungs of patients with pulmonary involvement of leptospirosis. We studied the lungs of 18 patients who died of leptospirosis and compared them with 2 groups of controls: normal and noninfectious hemorrhagic lungs. Using immunohistochemistry and image analysis, we quantified the expression of the C3a anaphylatoxin receptor, intercellular adhesion molecule, vascular cell adhesion molecule, and Toll-like receptor 2 in small pulmonary vessels and in the alveolar septa. There was an increased expression of intercellular adhesion molecule (P <.03) and C3a anaphylatoxin receptor (P <.008) in alveolar septa in the leptospirosis group compared with the normal and hemorrhagic controls. In the vessels of the leptospirosis group, there was an increased expression of intercellular adhesion molecule (P=.004), vascular cell adhesion molecule (P=.030), and Toll-like receptor 2 (P=.042) compared with the normal group. Vascular cell adhesion molecule expression in vessels was higher in the leptospirosis group compared with the hemorrhagic group (P=.015). Our results indicate that immune receptors and adhesion molecules participate in the phenomena leading to pulmonary hemorrhage in leptospirosis. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the greatest challenges in urological oncology is renal cell carcinoma (RCC), which is the third leading cause of death in genitourinary cancers. RCCs are highly vascularized and respond positively to antiangiogenic therapy. Endostatin (ES) is a fragment of collagen XVIII that possesses antiangiogenic activity. In this study, we examined the potential of ES-based antiangiogenic therapy to activate tumor-associated endothelial cells in metastatic RCC (mRCC). Balb/c-bearing Renca cells were treated with NIH/3T3-LendSN or, as a control, with NIH/3T3-LXSN cells. The T-cell subsets and lymphocyte populations of tumors, mediastinal lymph nodes and the spleen were assessed by flow cytometry. The expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was assessed by real-time PCR, flow cytometry and immunohistochemistry analysis. ES gene therapy led to an increase in the percentage of infiltrating CD4-interferon (IFN)-gamma cells (P<0.05), CD8-IFN-gamma cells (P<0.01) and CD49b-tumor necrosis factor-alpha cells (P<0.01). In addition, ES therapy caused an increase at the mRNA level of ICAM-1 (1.4-fold; P<0.01) and VCAM-1 (1.5-fold) (control vs treated group; P<0.001). Through flow cytometry, we found a significant increase in the CD34/ICAM-1 cells (8.1-fold; P<0.001) and CD34/VCAM-1 cells (1.6-fold; P<0.05). ES gene therapy induced a significant increase in both T CD4 and CD8 cells in the lymph nodes and the spleen, suggesting that ES therapy may facilitate cell survival or clonal expansion. CD49b cells were also present in increased quantities in all of these organs. In this study, we demonstrate an antitumor inflammatory effect of ES in an mRCC model, and this effect is mediated by an increase in ICAM-1 and VCAM-1 expression in tumor-associated endothelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The objective of this study was to evaluate the effect of three contraceptive pills containing ethinylestradiol (EE) (20 or 30 mcg) in combination with drospirenone (DRSP) and levonorgestrel (LNG) on plasma concentration of adhesion molecules vascular cell adhesion molecule -1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin. Study Design: A cross-sectional study was conducted with 72 participants (18-30 years old) distributed into three groups that used oral contraceptives containing EE 20 or 30 mcg combined with DRSP 3 mg or EE 30 mcg/LNG 150 mcg for at least 6 months. The control group was comprised of nonusers of contraceptives. Soluble VCAM-1, soluble ICAM-1 and soluble E-selectin were evaluated by enzyme-linked immunosorbent assay. Results: Compared to the control group, a significant decrease was found in VCAM-1 and ICAM-1 concentrations with use of DRSP/20 EE and LNG/30 EE. Conclusions: DRSP/20 EE and LNG/30 EE induce favorable changes in endothelial function. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that BJcuL, a lectin purified from Bothrops jararacussu venom, exerts cytotoxic effects to gastric carcinoma cells MKN45 and AGS. This effect was due to the direct interaction with specific glycans on the cells surface and was observed by cell viability decrease, disorganization of actin filaments and apoptosis. In addition, BJcuL was able to reduce tumor cell adhesion to matrigel, what was inhibited by specific carbohydrate or partially inhibited when cells were pre-incubated with matrigel. Our results suggest that BJcuL was able to promote apoptosis in both tumor cells lines and therefore has a prospect for potential use in cancer therapy. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Adhesion to extracellular matrix (ECM) components has been implicated in the proliferative and invasive properties of tumor cells. We investigated the ability of C6 glioma cells to attach to ECM components in vitro and described the regulatory role of glycosaminoglycans (GAGs) on their adhesion to the substrate, proliferation and migration. Results ECM proteins (type IV collagen, laminin and fibronectin) stimulate rat C6 glioma cell line adhesion in vitro, in a dose-dependent manner. The higher adhesion values were achieved with type IV collagen. Exogenous heparin or chondroitin sulfate impaired, in a dose-dependent manner the attachment of C6 glioma cell line to laminin and fibronectin, but not to type IV collagen. Dextran sulfate did not affect C6 adhesion to any ECM protein analyzed, indicating a specific role of GAGs in mediating glioma adhesion to laminin and fibronectin. GAGs and dextran sulfate did not induce C6 glioma detachment from any tested substrate suggesting specific effect in the initial step of cell adhesion. Furthermore, heparin and chondroitin sulfate impaired C6 cells proliferation on fibronectin, but not on type IV collagen or laminin. In contrast, both GAGs stimulate the glioma migration on laminin without effect on type IV collagen or fibronectin. Conclusion The results suggest that GAGs and proteoglycans regulate glioma cell adhesion to ECM proteins in specific manner leading to cell proliferation or cell migration, according to the ECM composition, thus modulating tumor cell properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epithelial cells are mainly responsible for the formation of tissues that cover the external and internal surfaces of organs like skin, lining of the lungs and intestines. The cells must adhere to substrates and to each other in compliance with certain stimulus. In this way, adhesion properties can be regulated by the cell which simultaneously senses the chemical and mechanical properties of its environment. Their adhesion and growth on biomaterials depends on substrate properties such as surface wettability, topography and chemistry. The aim of this study is to investigate cell-surface interactions using several materials and different surfaces.