979 resultados para CARDIAC OUTPUT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nicotine has been shown to stimulate the release of vasopressin and to cause significant hemodynamic changes. The mechanisms leading to enhanced vasopressin secretion and the vascular consequences of the high plasma vasopressin levels during nicotine infusion have not yet been determined. Therefore, the purposes of the present study were 1) to examine in normal conscious rats the role of opioid peptides in the nicotine-induced increase in plasma vasopressin levels and 2) to assess the role of vasopressin in the hemodynamic effects of nicotine (20 micrograms/min for 15 min) using a specific V1 antagonist of the vascular actions of vasopressin. Plasma vasopressin levels were significantly increased in the nicotine-treated animals (39.5 +/- 10 vs. 3.7 +/- 0.6 pg/ml in the controls, P less than .01). Pretreatment with naloxone, an antagonist of opioids at their receptors, did not reduce the vasopressin levels (47.7 +/- 9 pg/ml). Nicotine also increased mean blood pressure (122.5 +/- 2.5 to 145.2 +/- 3.3 mm Hg, P less than .01) and decreased heart rate (461 +/- 6 to 386 +/- 14.5 beats/min, P less than .05). Administration of the vasopressin V1 antagonist before the nicotine infusion did not affect the systemic hemodynamics or the regional blood flow distribution, as assessed by radiolabeled microspheres. Thus, these results suggest that the nicotine-induced secretion of vasopressin is not mediated by opioid receptors and that the high plasma vasopressin levels do not exert any significant hemodynamic effect on cardiac output or blood flow distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We evaluated a new pulse oximeter designed to monitor beat-to-beat arterial oxygen saturation (SaO2) and compared the monitored SaO2 with arterial samples measured by co-oximetry. In 40 critically ill children (112 data sets) with a mean age of 3.9 years (range 1 day to 19 years), SaO2 ranged from 57% to 100%, and PaO2 from 27 to 128 mm Hg, heart rates from 85 to 210 beats per minute, hematocrit from 20% to 67%, and fetal hemoglobin levels from 1.3% to 60%; peripheral temperatures varied between 26.5 degrees and 36.5 degrees C. Linear correlation analysis revealed a good agreement between simultaneous pulse oximeter values and both directly measured SaO2 (r = 0.95) and that calculated from measured arterial PaO2 (r = 0.95). The device detected several otherwise unrecognized drops in SaO2 but failed to function in four patients with poor peripheral perfusion secondary to low cardiac output. Simultaneous measurements with a tcPO2 electrode showed a similarly good correlation with PaO22 (r = 0.91), but the differences between the two measurements were much wider (mean 7.1 +/- 10.3 mm Hg, range -14 to +49 mm Hg) than the differences between pulse oximeter SaO2 and measured SaO2 (1.5% +/- 3.5%, range -7.5% to -9%) and were not predictable. We conclude that pulse oximetry is a reliable and accurate noninvasive device for measuring saturation, which because of its rapid response time may be an important advance in monitoring changes in oxygenation and guiding oxygen therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental evidence demonstrates that therapeutic temperature modulation with the use of mild induced hypothermia (MIH, defined as the maintenance of body temperature at 32-35 °C) exerts significant neuroprotection and attenuates secondary cerebral insults after traumatic brain injury (TBI). In adult TBI patients, MIH has been used during the acute "early" phase as prophylactic neuroprotectant and in the sub-acute "late" phase to control brain edema. When used to control brain edema, MIH is effective in reducing elevated intracranial pressure (ICP), and is a valid therapy of refractory intracranial hypertension in TBI patients. Based on the available evidence, we recommend: applying standardized algorithms for the management of induced cooling; paying attention to limit potential side effects (shivering, infections, electrolyte disorders, arrhythmias, reduced cardiac output); and using controlled, slow (0.1-0.2 °C/h) rewarming, to avoid rebound ICP. The optimal temperature target should be titrated to maintain ICP <20 mmHg and to avoid temperatures <35 °C. The duration of cooling should be individualized until the resolution of brain edema, and may be longer than 48 h. Patients with refractory elevated ICP following focal TBI (e.g. hemorrhagic contusions) may respond better to MIH than those with diffuse injury. Randomized controlled trials are underway to evaluate the impact of MIH on neurological outcome in adult TBI patients with elevated ICP. The use of MIH as prophylactic neuroprotectant in the early phase of adult TBI is not supported by clinical evidence and is not recommended.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this review was to provide a synopsis of the literature concerning the physiological differences between cycling and running. By comparing physiological variables such as maximal oxygen consumption (V O(2max)), anaerobic threshold (AT), heart rate, economy or delta efficiency measured in cycling and running in triathletes, runners or cyclists, this review aims to identify the effects of exercise modality on the underlying mechanisms (ventilatory responses, blood flow, muscle oxidative capacity, peripheral innervation and neuromuscular fatigue) of adaptation. The majority of studies indicate that runners achieve a higher V O(2max) on treadmill whereas cyclists can achieve a V O(2max) value in cycle ergometry similar to that in treadmill running. Hence, V O(2max) is specific to the exercise modality. In addition, the muscles adapt specifically to a given exercise task over a period of time, resulting in an improvement in submaximal physiological variables such as the ventilatory threshold, in some cases without a change in V O(2max). However, this effect is probably larger in cycling than in running. At the same time, skill influencing motor unit recruitment patterns is an important influence on the anaerobic threshold in cycling. Furthermore, it is likely that there is more physiological training transfer from running to cycling than vice versa. In triathletes, there is generally no difference in V O(2max) measured in cycle ergometry and treadmill running. The data concerning the anaerobic threshold in cycling and running in triathletes are conflicting. This is likely to be due to a combination of actual training load and prior training history in each discipline. The mechanisms surrounding the differences in the AT together with V O(2max) in cycling and running are not largely understood but are probably due to the relative adaptation of cardiac output influencing V O(2max) and also the recruitment of muscle mass in combination with the oxidative capacity of this mass influencing the AT. Several other physiological differences between cycling and running are addressed: heart rate is different between the two activities both for maximal and submaximal intensities. The delta efficiency is higher in running. Ventilation is more impaired in cycling than in running. It has also been shown that pedalling cadence affects the metabolic responses during cycling but also during a subsequent running bout. However, the optimal cadence is still debated. Central fatigue and decrease in maximal strength are more important after prolonged exercise in running than in cycling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether, during hemorrhagic shock, the effect of epinephrine on energy metabolism could be deleterious, by enhancing the oxygen requirement at a given level of oxygen delivery (DO2). DESIGN: Prospective, randomized, control trial. SETTING: Experimental laboratory. SUBJECTS: Two groups of seven mongrel dogs were studied. The epinephrine group received a continuous infusion of epinephrine (1 microgram/min/kg) while the control group received saline. INTERVENTION: Dogs were anesthetized with pentobarbital, and shock was produced by stepwise hemorrhage. MEASUREMENTS AND MAIN RESULTS: Oxygen consumption (VO2) was continuously measured by the gas exchange technique, while DO2 was independently calculated from cardiac output (measured by thermodilution) and blood oxygen content. A dual-lines regression fit was applied to the DO2 vs. VO2 plot. The intersection of the two regression lines defined the critical value of DO2. Values above critical DO2 belonged to phase 1, while phase 2 occurred below critical DO2. In the control group, VO2 was independent of DO2 during phase 1; VO2 was dependent on DO2 during phase 2. In the epinephrine group, the expected increase in VO2 (+19%) and DO2 (+50%) occurred under normovolemic conditions. During hemorrhage, VO2 immediately decreased, and the slope of phase 1 was significantly (p < .01) different from zero, and was significantly (p < .05) steeper than in the control group (0.025 +/- 0.005 vs. 0.005 +/- 0.010). However, the critical DO2 (8.7 +/- 1.7 vs. 9.7 +/- 2.4 mL/min/kg), the critical VO2 (5.6 +/- 0.5 vs. 5.5 +/- 0.9 mL/min/kg), and the slope of phase 2 (0.487 +/- 0.080 vs. 0.441 +/- 0.130) were not different from control values. CONCLUSIONS: The administration of pharmacologic doses of epinephrine significantly increased VO2 under normovolemic conditions due to the epinephrine-induced thermogenic effect. This effect progressively decreased during hemorrhage. The critical DO2 and the relationship between DO2 and VO2 in the supply-dependent phase of shock were unaffected by epinephrine infusion. These results suggest that during hemorrhagic shock, epinephrine administration did not exert a detrimental effect on the relationship between DO2 and VO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Half of the patients with end-stage heart failure suffer from persistent atrial fibrillation (AF). Atrial kick (AK) accounts for 10-15% of the ejection fraction. A device restoring AK should significantly improve cardiac output (CO) and possibly delay ventricular assist device (VAD) implantation. This study has been designed to assess the mechanical effects of a motorless pump on the right chambers of the heart in an animal model. METHODS: Atripump is a dome-shaped biometal actuator electrically driven by a pacemaker-like control unit. In eight sheep, the device was sutured onto the right atrium (RA). AF was simulated with rapid atrial pacing. RA ejection fraction (EF) was assessed with intracardiac ultrasound (ICUS) in baseline, AF and assisted-AF status. In two animals, the pump was left in place for 4 weeks and then explanted. Histology examination was carried out. The mean values for single measurement per animal with +/-SD were analysed. RESULTS: The contraction rate of the device was 60 per min. RA EF was 41% in baseline, 7% in AF and 21% in assisted-AF conditions. CO was 7+/-0.5 l min(-1) in baseline, 6.2+/-0.5 l min(-1) in AF and 6.7+/-0.5 l min(-1) in assisted-AF status (p<0.01). Histology of the atrium in the chronic group showed chronic tissue inflammation and no sign of tissue necrosis. CONCLUSIONS: The artificial muscle restores the AK and improves CO. In patients with end-stage cardiac failure and permanent AF, if implanted on both sides, it would improve CO and possibly delay or even avoid complex surgical treatment such as VAD implantation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The impact of osmotic therapies on brain oxygen has not been extensively studied in humans. We examined the effects on brain tissue oxygen tension (PbtO(2)) of mannitol and hypertonic saline (HTS) in patients with severe traumatic brain injury (TBI) and refractory intracranial hypertension. METHODS: 12 consecutive patients with severe TBI who underwent intracranial pressure (ICP) and PbtO(2) monitoring were studied. Patients were treated with mannitol (25%, 0.75 g/kg) for episodes of elevated ICP (>20 mm Hg) or HTS (7.5%, 250 ml) if ICP was not controlled with mannitol. PbtO(2), ICP, mean arterial pressure, cerebral perfusion pressure (CPP), central venous pressure and cardiac output were monitored continuously. RESULTS: 42 episodes of intracranial hypertension, treated with mannitol (n = 28 boluses) or HTS (n = 14 boluses), were analysed. HTS treatment was associated with an increase in PbtO(2) (from baseline 28.3 (13.8) mm Hg to 34.9 (18.2) mm Hg at 30 min, 37.0 (17.6) mm Hg at 60 min and 41.4 (17.7) mm Hg at 120 min; all p<0.01) while mannitol did not affect PbtO(2) (baseline 30.4 (11.4) vs 28.7 (13.5) vs 28.4 (10.6) vs 27.5 (9.9) mm Hg; all p>0.1). Compared with mannitol, HTS was associated with lower ICP and higher CPP and cardiac output. CONCLUSIONS: In patients with severe TBI and elevated ICP refractory to previous mannitol treatment, 7.5% hypertonic saline administered as second tier therapy is associated with a significant increase in brain oxygenation, and improved cerebral and systemic haemodynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To assess the role of arginine vasopressin (AVP) in congestive heart failure (CHF), 10 patients with CHF refractory to conventional treatment were studied before and 60 minutes after intravenous administration of 5 micrograms/kg of d(CH2)5Tyr(Me)AVP, a specific antagonist of AVP at the vascular receptor level. Heart rate, systemic arterial pressure, pulmonary arterial pressure, pulmonary capillary wedge pressure, cardiac index by thermodilution and cutaneous blood flow by laser-Doppler technique were measured. In 9 patients with no significant hemodynamic and cutaneous blood flow response to the AVP antagonist, baseline values (mean +/- standard deviation) were: heart rate, 77 +/- 14 beats/min; systemic arterial pressure, 120/79 +/- 18/8 mm Hg; pulmonary arterial pressure, 42/21 +/- 12/8 mm Hg; pulmonary capillary wedge pressure, 19 +/- 7 mm Hg; cardiac index, 2.2 +/- 0.6 liters/min/m2; plasma AVP, 2.3 +/- 0.8 pg/ml; and plasma osmolality, 284 +/- 14 mosm/kg H2O. The tenth patient had the most severe CHF. His plasma AVP level was 55 pg/ml and plasma osmolality was 290 mosm/kg. He responded to the AVP antagonist with a decrease in systemic arterial pressure from 115/61 to 79/41 mm Hg, in pulmonary arterial pressure from 58/31 to 33/13 mm Hg and in pulmonary capillary wedge pressure from 28 to 15 mm Hg. Simultaneously, cardiac index increased from 1.1 to 2.2 liters/min/m2 and heart rate from 113 to 120 beats/min; cutaneous blood flow increased 5-fold.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Hemodynamic resuscitation should be aimed at achieving not only adequate cardiac output but also sufficient mean arterial pressure (MAP) to guarantee adequate tissue perfusion pressure. Since the arterial pressure response to volume expansion (VE) depends on arterial tone, knowing whether a patient is preload-dependent provides only a partial solution to the problem. The objective of this study was to assess the ability of a functional evaluation of arterial tone by dynamic arterial elastance (Ea(dyn)), defined as the pulse pressure variation (PPV) to stroke volume variation (SVV) ratio, to predict the hemodynamic response in MAP to fluid administration in hypotensive, preload-dependent patients with acute circulatory failure. METHODS We performed a prospective clinical study in an adult medical/surgical intensive care unit in a tertiary care teaching hospital, including 25 patients with controlled mechanical ventilation who were monitored with the Vigileo(®) monitor, for whom the decision to give fluids was made because of the presence of acute circulatory failure, including arterial hypotension (MAP ≤65 mmHg or systolic arterial pressure <90 mmHg) and preserved preload responsiveness condition, defined as a SVV value ≥10%. RESULTS Before fluid infusion, Ea(dyn) was significantly different between MAP responders (MAP increase ≥15% after VE) and MAP nonresponders. VE-induced increases in MAP were strongly correlated with baseline Ea(dyn) (r(2) = 0.83; P < 0.0001). The only predictor of MAP increase was Ea(dyn) (area under the curve, 0.986 ± 0.02; 95% confidence interval (CI), 0.84-1). A baseline Ea(dyn) value >0.89 predicted a MAP increase after fluid administration with a sensitivity of 93.75% (95% CI, 69.8%-99.8%) and a specificity of 100% (95% CI, 66.4%-100%). CONCLUSIONS Functional assessment of arterial tone by Ea(dyn), measured as the PVV to SVV ratio, predicted arterial pressure response after volume loading in hypotensive, preload-dependent patients under controlled mechanical ventilation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Although several parameters have been proposed to predict the hemodynamic response to fluid expansion in critically ill patients, most of them are invasive or require the use of special monitoring devices. The aim of this study is to determine whether noninvasive evaluation of respiratory variation of brachial artery peak velocity flow measured using Doppler ultrasound could predict fluid responsiveness in mechanically ventilated patients. METHODS We conducted a prospective clinical research in a 17-bed multidisciplinary ICU and included 38 mechanically ventilated patients for whom fluid administration was planned due to the presence of acute circulatory failure. Volume expansion (VE) was performed with 500 mL of a synthetic colloid. Patients were classified as responders if stroke volume index (SVi) increased >or= 15% after VE. The respiratory variation in Vpeakbrach (DeltaVpeakbrach) was calculated as the difference between maximum and minimum values of Vpeakbrach over a single respiratory cycle, divided by the mean of the two values and expressed as a percentage. Radial arterial pressure variation (DeltaPPrad) and stroke volume variation measured using the FloTrac/Vigileo system (DeltaSVVigileo), were also calculated. RESULTS VE increased SVi by >or= 15% in 19 patients (responders). At baseline, DeltaVpeakbrach, DeltaPPrad and DeltaSVVigileo were significantly higher in responder than nonresponder patients [14 vs 8%; 18 vs. 5%; 13 vs 8%; P < 0.0001, respectively). A DeltaVpeakbrach value >10% predicted fluid responsiveness with a sensitivity of 74% and a specificity of 95%. A DeltaPPrad value >10% and a DeltaSVVigileo >11% predicted volume responsiveness with a sensitivity of 95% and 79%, and a specificity of 95% and 89%, respectively. CONCLUSIONS Respiratory variations in brachial artery peak velocity could be a feasible tool for the noninvasive assessment of fluid responsiveness in patients with mechanical ventilatory support and acute circulatory failure. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT00890071.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE. The purpose of this study was to analyze change of lifestyle in obese patients with cognitive behavior therapy and acupressure. METHODS. An experimental study was performed with placebo control group. Forty patients were randomly assigned to intervention group (cognitive behaviour therapy + acupressure) and control group (information session). Outcome measure was a questionnaire for the assessment and quantification of obesity related lifestyles. Measures were performed at baseline and, after 3-months intervention. RESULTS. After 3 months of treatment, the intervention group showed significant differences (p<0.05) in weight loss, diet and physical activity. CONCLUSION. In the obese patient, cognitive behavior therapy and acupressure, it has lost at least three kilograms over three months and has changed lifestyles related to obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of acute intravenous dopamine (DA) administration at three sequential (but randomized) infusion rates was studied in eight young male volunteers. DA was infused at 2.5, 5, and 10 micrograms.kg-1.min-1. O2 consumption (VO2) and CO2 production (VCO2) were measured continuously by means of a computerized indirect calorimeter (blood system). In response to the 5- and 10-micrograms.kg-1.min-1 DA infusion rates, a significant increase (P less than 0.01) in VO2 corresponding to a 6% (range, 3-10) and 15% (range, 12-23) increase, respectively, of preinfusion values was observed. In contrast, at the low dose (2.5 micrograms.kg-1.min-1), DA induced no significant change in VO2. Cardiac output (Qc) increased significantly after the three DA administration rates [19% (range, 0-42), 34% (range, 17-71), and 25% (range, -3 to +47)] for the doses 2.5, 5, and 10 micrograms.-kg-1.min-1, respectively. The increase in O2 delivery (QO2) outweighed VO2 at all administration rates despite the relative drop in QO2 at the maximal DA administration rate. These results indicate that in humans DA improves net O2 supply to tissues proportionally more than it increases VO2 at all doses used in the present study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a case of a fifty year old woman with Graves' disease with positive AntiTPO antibodies and positive AntiTSH receptor antibodies, who was hospitalized with a right cardiac failure. A pulmonary hypertension was discovered on echocardiography. After adequate antithyroid therapy, the right cardiac failure regressed rapidly and pulmonary pressure normalised. An autoimmune process has often been proposed to explain the association between pulmonary hypertension and hyperthyroidism. We report the arguments supporting this autoimmune etiopathogenesis. We also discuss an other hypothesis based on a direct effect of thyroid hormones on the pulmonary circulation and the effects of high cardiac output associated with hyperthyroidism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The effects of thoracolumbal spinal cord stimulation (SCS) are confined to restricted microcirculatory areas. This limitation is generally attributed to a predominantly segmental mode of action on the autonomic nervous system. The goal of this study was to determine whether SCS applied close to supraspinal autonomic centers would induce generalized hemodynamic changes that could explain its alleged antianginal properties. METHODS: Invasive hemodynamic tests were performed in 15 anesthetized Göttingen minipigs submitted to iterative cervical SCS of various duration and intensity. RESULTS: Hemodynamic changes exceeding 10% were observed in 59 of 68 SCS sessions (87%). Their extent and time to peak varied with SCS intensity. At 2, 5, and 10 V, significant (t test p < 0.05) peak changes occurred in cardiac output (+34%, +29%, and +28%, respectively), stroke volume (+19%, +16%, +15%), mean pressure (+9%, +27%, +40%), heart rate (+14%, +23%, +14%), systemic (-17%, NS, NS), and pulmonary vascular (25%, NS, NS) resistances. Strikingly, at 2 V, the increase in cardiac output (+34%) was higher than the synchronous rise in rate pressure product (+22%), indicating efficient cardiac work. At 10 V, however, the cardiac work was inefficient (rate pressure product + 53%/cardiac output + 28%). CONCLUSIONS: Low-voltage cervical neuromodulation reduces the postcharge and improves cardiac work efficiency. The resulting reduction in oxygen myocardial demand may account for decreased anginal pain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: A right-to-left shunt can be identified by contrast transcranial Doppler ultrasonography (c-TCD) at rest and/or after a Valsalva maneuver (VM) or by arterial blood gas (ABG) measurement. We assessed the influence of controlled strain pressures and durations during VM on the right-to-left passage of microbubbles, on which depends the shunt classification by c-TCD, and correlated it with the right-to-left shunt evaluation by ABG measurements in stroke patients with patent foramen ovale (PFO). METHODS: We evaluated 40 stroke patients with transesophageal echocardiography-documented PFO. The microbubbles were recorded with TCD at rest and after 4 different VM conditions with controlled duration and target strain pressures (duration in seconds and pressure in cm H2O, respectively): V5-20, V10-20, V5-40, and V10-40. The ABG analysis was performed after pure oxygen breathing in 34 patients, and the shunt was calculated as percentage of cardiac output. RESULTS: Among all VM conditions, V5-40 and V10-40 yielded the greatest median number of microbubbles (84 and 95, respectively; P&lt;0.01). A significantly larger number of microbubbles were detected in V5-40 than in V5-20 (P&lt;0.001) and in V10-40 than in V10-20 (P&lt;0.01). ABG was not sensitive enough to detect a shunt in 31 patients. CONCLUSIONS: The increase of VM expiratory pressure magnifies the number of microbubbles irrespective of the strain duration. Because the right-to-left shunt classification in PFO is based on the number of microbubbles, a controlled VM pressure is advised for a reproducible shunt assessment. The ABG measurement is not sensitive enough for shunt assessment in stroke patients with PFO.