973 resultados para Bose Einstein condensate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the production of BECs on a new type of atom chip based on silver foil. Our atom chip is fabricated with thick wires capable of carrying currents of several amperes without overheating. The silver surface is highly reflective to light resonant with optical transitions used for Rb. The pattern on the chip consists of two parallel Z-trap wires, capable of producing two-wire guide, and two additional endcap wires for varying the axial confinement. Condensates are produced in magnetic microtraps formed within 1 mm of surface of the chip. We have observed the fragmentation of cold atom clouds when brought close to the chip surface. This results from a perturbed trapping potential caused by nanometer deviations of the current path through the wires on the chip. We present results of fragmentation of cold clouds at distances below 100 µm from the wires and investigate the origin of the deviating current. The fragmentation has different characteristics to those seen with copper conductors. The dynamics of atoms in these microtraps is also investigated. ©2005 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel approach for the optical manipulation of neutral atoms in annular light structures produced by the phenomenon of conical refraction occurring in biaxial optical crystals. For a beam focused to a plane behind the crystal, the focal plane exhibits two concentric bright rings enclosing a ring of null intensity called the Poggendorff ring. We demonstrate both theoretically and experimentally that the Poggendorff dark ring of conical refraction is confined in three dimensions by regions of higher intensity. We derive the positions of the confining intensity maxima and minima and discuss the application of the Poggendorff ring for trapping ultra-cold atoms using the repulsive dipole force of blue-detuned light. We give analytical expressions for the trapping frequencies and potential depths along both the radial and the axial directions. Finally, we present realistic numerical simulations of the dynamics of a 87Rb Bose-Einstein condensate trapped inside the Poggendorff ring which are in good agreement with corresponding experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, two different sets of experiments are described. The first is an exploration of the microscopic superfluidity of dilute gaseous Bose- Einstein condensates. The second set of experiments were performed using transported condensates in a new BEC apparatus. Superfluidity was probed by moving impurities through a trapped condensate. The impurities were created using an optical Raman transition, which transferred a small fraction of the atoms into an untrapped hyperfine state. A dramatic reduction in the collisions between the moving impurities and the condensate was observed when the velocity of the impurities was close to the speed of sound of the condensate. This reduction was attributed to the superfluid properties of a BEC. In addition, we observed an increase in the collisional density as the number of impurity atoms increased. This enhancement is an indication of bosonic stimulation by the occupied final states. This stimulation was observed both at small and large velocities relative to the speed of sound. A theoretical calculation of the effect of finite temperature indicated that collision rate should be enhanced at small velocities due to thermal excitations. However, in the current experiments we were insensitive to this effect. Finally, the factor of two between the collisional rate between indistinguishable and distinguishable atoms was confirmed. A new BEC apparatus that can transport condensates using optical tweezers was constructed. Condensates containing 10-15 million sodium atoms were produced in 20 s using conventional BEC production techniques. These condensates were then transferred into an optical trap that was translated from the ‘production chamber’ into a separate vacuum chamber: the ‘science chamber’. Typically, we transferred 2-3 million condensed atoms in less than 2 s. This transport technique avoids optical and mechanical constrainsts of conventional condensate experiments and allows for the possibility of novel experiments. In the first experiments using transported BEC, we loaded condensed atoms from the optical tweezers into both macroscopic and miniaturized magnetic traps. Using microfabricated wires on a silicon chip, we observed excitation-less propagation of a BEC in a magnetic waveguide. The condensates fragmented when brought very close to the wire surface indicating that imperfections in the fabrication process might limit future experiments. Finally, we generated a continuous BEC source by periodically replenishing a condensate held in an optical reservoir trap using fresh condensates delivered using optical tweezers. More than a million condensed atoms were always present in the continuous source, raising the possibility of realizing a truly continuous atom lase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a novel method of fabricating atom chips that are well suited to the production and manipulation of atomic BoseEinstein condensates. Our chip was created using a silver foil and simple micro-cutting techniques without the need for photolithography. It can sustain larger currents than conventional chips, and is compatible with the patterning of complex trapping potentials. A near pure BoseEinstein condensate of 4 × 104 87Rb atoms has been created in a magnetic microtrap formed by currents through wires on the chip. We have observed the fragmentation of atom clouds in close proximity to the silver conductors. The fragmentation has different characteristic features to those seen with copper conductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the merging and splitting of quasi-two-dimensional Bose-Einstein condensates with strong dipolar interactions. We observe that if the dipoles have a non-zero component in the plane of the condensate, the dynamics of merging or splitting along two orthogonal directions, parallel and perpendicular to the projection of dipoles on the plane of the condensate, are different. The anisotropic merging and splitting of the condensate is a manifestation of the anisotropy of the roton-like mode in the dipolar system. The difference in dynamics disappears if the dipoles are oriented at right angles to the plane of the condensate as in this case the Bogoliubov dispersion, despite having roton-like features, is isotropic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tese de doutorado apresenta uma aplicação de técnicas de teoria de campos em um sistema da matéria condensada. Motivados por experimentos em gases atômicos, apresentamos um estudo sobre misturas binárias de gases atômicos na presença de uma interação do tipo Josephson. O foco principal é o estudo de um modelo de dois campos complexos não-relativisticos com simetria O(2). Esta simetria é quebrada por interações que produzem um desbalanço nas populações das duas espécies bosônicas. Estudamos o modelo na aproximação de campo médio mais flutuações gaussianas, usando o formalismo de teoria de campos a temperatura finita em tempo imaginário. Os resultados mostram que, num certo intervalo de temperaturas, as duas espécies bosônicas condensam à mesma temperatura crítica e a fase relativa do condensado é fixa, determinada pela fase do campo externo aplicado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of colliding Bose-Einstein condensates is investigated. A set of coupled Gross-Pitaevskii equations is thus considered, and analyzed via a perturbative approach. No assumption is made on the signs ( or magnitudes) of the relevant parameters like the scattering lengths and the coupling coefficients. The formalism is therefore valid for asymmetric as well as symmetric coupled condensate wave states. A new set of explicit criteria is derived and analyzed. An extended instability region, in addition to an enhanced instability growth rate, is predicted for unstable two component bosons, as compared to the individual ( uncoupled) state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vortex dynamics in inhomogeneous Bose-Einstein condensates are studied numerically in two and three dimensions. We simulate the precession of a single vortex around the center of a trapped condensate, and use the Magnus force to estimate the precession frequency. Vortex ring dynamics in a spherical trap are also simulated, and we discover that a ring undergoes oscillatory motion around a circle of maximum energy. The position of this locus is calculated as a function of the number of condensed atoms. In the presence of dissipation, the amplitude of the oscillation will increase, eventually resulting in self-annihilation of the ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the quantum coherent tunneling dynamics of two weakly coupled atomic-molecular Bose-Einstein condensates (AMBEC). A weak link is supposed to be provided by a double-well trap. The regions of parameters where the macroscopic quantum localization of the relative atomic population occurs are revealed. The different dynamical regimes are found depending on the value of nonlinearity, namely, coupled oscillations of population imbalance of atomic and molecular condensate, including irregular oscillations regions, and macroscopic quantum self trapping regimes. Quantum means and quadrature variances are calculated for population of atomic and molecular condensates and the possibility of quadrature squeezing is shown via stochastic simulations within P-positive phase space representation method. Linear tunnel coupling between two AMBEC leads to correlations in quantum statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study certain stationary and time-evolution problems of trapped Bose-Einstein condensates using the numerical solution of the Gross-Pitaevskii (GP) equation with both spherical and axial symmetries. We consider time-evolution problems initiated by suddenly changing the interatomic scattering length or harmonic trapping potential in a stationary condensate. These changes introduce oscillations in the condensate which are studied in detail. We use a time iterative split-step method for the solution of the time-dependent GP equation, where all nonlinear and linear non-derivative terms are treated separately from the time propagation with the kinetic energy terms. Even for an arbitrarily strong nonlinear term this leads to extremely accurate and stable results after millions of time iterations of the original equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine two-component Gross-Pitaevskii equations with nonlinear and linear couplings, assuming self-attraction in one species and self-repulsion in the other, while the nonlinear inter-species coupling is also repulsive. For initial states with the condensate placed in the self-attractive component, a sufficiently strong linear coupling switches the collapse into decay (in the free space). Setting the linear-coupling coefficient to be time-periodic (alternating between positive and negative values, with zero mean value) can make localized states quasi-stable for the parameter ranges considered herein, but they slowly decay. The 2D states can then be completely stabilized by a weak trapping potential. In the case of the high-frequency modulation of the coupling constant, averaged equations are derived, which demonstrate good agreement with numerical solutions of the full equations. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate, analytically and numerically, families of bright solitons in a system of two linearly coupled nonlinear Schrodinger/Gross-Pitaevskii equations, describing two Bose-Einstein condensates trapped in an asymmetric double-well potential, in particular, when the scattering lengths in the condensates have arbitrary magnitudes and opposite signs. The solitons are found to exist everywhere where they are permitted by the dispersion law. Using the Vakhitov-Kolokolov criterion and numerical methods, we show that, except for small regions in the parameter space, the solitons are stable to small perturbations. Some of them feature self-trapping of almost all the atoms in the condensate with no atomic interaction or weak repulsion is coupled to the self-attractive condensate. An unusual bifurcation is found, when the soliton bifurcates from the zero solution with vanishing amplitude and width simultaneously diverging but at a finite number of atoms in the soliton. By means of numerical simulations, it is found that, depending on values of the parameters and the initial perturbation, unstable solitons either give rise to breathers or completely break down into incoherent waves (radiation). A version of the model with the self-attraction in both components, which applies to the description of dual-core fibers in nonlinear optics, is considered too, and new results are obtained for this much studied system. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bose-Einstein condensation in an ideal (i.e. interactionless) boson gas can be studied analytically, at university-level statistical and solid state physics, in any positive dimensionality (d > 0) for identical bosons with any positive-exponent (s > 0) energy-momentum (i.e. dispersion) relation. Explicit formulae with arbitrary dls are discussed for: the critical temperature (non-zero only if d/s > 1); the condensate fraction; the internal energy; and the constant-volume specific heat (found to possess a jump discontinuity only if d/s > 2) Classical results are recovered at sufficiently high temperatures. Applications to ordinary' Bose-Einstein condensation, as well as to photons, phonons, ferro-and antiferromagnetic magnons, and (very specially) to Cooper pairs in superconductivity, are mentioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effects of a repulsive three-body interaction on a system of trapped ultracold atoms in a Bose-Einstein condensed state. The stationary solutions of the corresponding s-wave nonlinear Schrödinger equation suggest a scenario of first-order liquid-gas phase transition in the condensed state up to a critical strength of the effective three-body force. The time evolution of the condensate with feeding process and three-body recombination losses has a different characteristic pattern. Also, the decay time of the dense (liquid) phase is longer than expected due to strong oscillations of the mean-squared radius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conditions for the existence of autosolitons were considered in trapped Bose-Einstein condensates with attractive atomic interactions. The expression for the parameters of the autosoliton was derived using the time-dependent variational approach for the nonconservative 3-dimensional Gross-pitaevskii equation and their stability was checked. The results were in agreement with the exact numerical calculations. It was shown that the transition from unstable to stable point solely depends on the magnitude of the parameters.