831 resultados para Biodegradable


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To investigate clinical outcomes of coronary intervention using a biolimus-eluting stent (BES) compared with a sirolimus-eluting stent (SES) in patients with acute myocardial infarction (AMI) in the Limus Eluted from A Durable versus ERodable Stent (LEADERS) coating trial at the final 5-year follow-up. METHODS The LEADERS trial is a multicentre all-comer study, where patients (n=1707) were randomised to percutaneous intervention with either BES containing biodegradable polymer or SES containing durable polymer. Out of 1707 patients enrolled in this trial, 573 patients had percutaneous coronary intervention for AMI (BES=280, SES=293) and were included in the current analysis. Patient-oriented composite endpoint (POCE, including all death, all myocardial infarction (MI) and all revascularisations), major adverse cardiac events (MACE, including cardiac death, MI and clinically indicated target vessel revascularisation) and stent thrombosis were assessed at 5-year follow-up. RESULTS The baseline clinical, angiographic and procedural characteristics were well matched between BES and SES groups. In all patients with AMI, coronary intervention with a BES, compared with SES, significantly reduced POCE (28.9% vs 42.3%; relative risk (RR) 0.61, 95% CI 0.47 to 0.82, p=0.001) at 5-year follow-up. There was also a reduction in MACE rate in the BES group (18.2% vs 25.9%; RR 0.67, 95% CI 0.47 to 0.95, p=0.025); however, there was no difference in cardiac death and stent thrombosis. In patients with ST-elevation MI (STEMI), coronary intervention with BES significantly reduced POCE (24.4% vs 39.3%; RR 0.55, 95% CI 0.36 to 0.85, p=0.006), MACE (12.6% vs 25.0%; RR 0.47, 95% CI 0.26 to 0.83, p=0.008) and cardiac death (3.0% vs 11.4%; RR 0.25, 95% CI 0.08 to 0.75, p=0.007), along with a trend towards reduction in definite stent thrombosis (3.7% vs 8.6%; RR 0.41, 95% CI 0.15 to 1.18, p=0.088), compared with SES. CONCLUSIONS BES, compared with SES, significantly improved safety and efficacy outcomes in patients with AMI, especially those with STEMI, at 5-year follow-up. TRIAL REGISTRATION NUMBER NCT 00389220.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Biodegradable polymers for release of antiproliferative drugs from drug-eluting stents aim to improve vascular healing. We assessed noninferiority of a novel ultrathin strut drug-eluting stent releasing sirolimus from a biodegradable polymer (Orsiro, O-SES) compared with the durable polymer Xience Prime everolimus-eluting stent (X-EES) in terms of the primary end point in-stent late lumen loss at 9 months. METHODS AND RESULTS A total of 452 patients were randomly assigned 2:1 to treatment with O-SES (298 patients, 332 lesions) or X-EES (154 patients, 173 lesions) in a multicenter, noninferiority trial. The primary end point was in-stent late loss at 9 months. O-SES was noninferior to X-EES for the primary end point (0.10±0.32 versus 0.11±0.29 mm; difference=0.00063 mm; 95% confidence interval, -0.06 to 0.07; Pnoninferiority<0.0001). Clinical outcome showed similar rates of target-lesion failure at 1 year (O-SES 6.5% versus X-EES 8.0%; hazard ratio=0.82; 95% confidence interval, 0.40-1.68; log-rank test: P=0.58) without cases of stent thrombosis. A subgroup of patients (n=55) underwent serial optical coherence tomography at 9 months, which demonstrated similar neointimal thickness among lesions allocated to O-SES and X-EES (0.10±0.04 mm versus 0.11±0.04 mm; -0.01 [-0.04, -0.01]; P=0.37). Another subgroup of patients (n=56) underwent serial intravascular ultrasound at baseline and 9 months indicating a potential difference in neointimal area at follow-up (O-SES, 0.16±0.33 mm(2) versus X-EES, 0.43±0.56 mm(2); P=0.04). CONCLUSIONS Compared with durable polymer X-EES, novel biodegradable polymer-based O-SES was found noninferior for the primary end point in-stent late lumen loss at 9 months. Clinical event rates were comparable without cases of stent thrombosis throughout 1 year of follow-up. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT01356888.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Ultrathin strut biodegradable polymer sirolimus-eluting stents (BP-SES) proved noninferior to durable polymer everolimus-eluting stents (DP-EES) for a composite clinical end point in a population with minimal exclusion criteria. We performed a prespecified subgroup analysis of the Ultrathin Strut Biodegradable Polymer Sirolimus-Eluting Stent Versus Durable Polymer Everolimus-Eluting Stent for Percutaneous Coronary Revascularisation (BIOSCIENCE) trial to compare the performance of BP-SES and DP-EES in patients with diabetes mellitus. METHODS AND RESULTS BIOSCIENCE trial was an investigator-initiated, single-blind, multicentre, randomized, noninferiority trial comparing BP-SES versus DP-EES. The primary end point, target lesion failure, was a composite of cardiac death, target-vessel myocardial infarction, and clinically indicated target lesion revascularization within 12 months. Among a total of 2119 patients enrolled between February 2012 and May 2013, 486 (22.9%) had diabetes mellitus. Overall diabetic patients experienced a significantly higher risk of target lesion failure compared with patients without diabetes mellitus (10.1% versus 5.7%; hazard ratio [HR], 1.80; 95% confidence interval [CI], 1.27-2.56; P=0.001). At 1 year, there were no differences between BP-SES versus DP-EES in terms of the primary end point in both diabetic (10.9% versus 9.3%; HR, 1.19; 95% CI, 0.67-2.10; P=0.56) and nondiabetic patients (5.3% versus 6.0%; HR, 0.88; 95% CI, 0.58-1.33; P=0.55). Similarly, no significant differences in the risk of definite or probable stent thrombosis were recorded according to treatment arm in both study groups (4.0% versus 3.1%; HR, 1.30; 95% CI, 0.49-3.41; P=0.60 for diabetic patients and 2.4% versus 3.4%; HR, 0.70; 95% CI, 0.39-1.25; P=0.23, in nondiabetics). CONCLUSIONS In the prespecified subgroup analysis of the BIOSCIENCE trial, clinical outcomes among diabetic patients treated with BP-SES or DP-EES were comparable at 1 year. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01443104.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS Our aim was to compare the safety and efficacy of a novel, ultrathin strut, biodegradable polymer sirolimus-eluting stent (BP-SES) with a thin strut, durable polymer everolimus-eluting stent (DP-EES) in a pre-specified subgroup of patients with acute ST-segment elevation myocardial infarction (STEMI) enrolled in the BIOSCIENCE trial. METHODS AND RESULTS The BIOSCIENCE trial is an investigator-initiated, single-blind, multicentre, randomised non-inferiority trial (NCT01443104). Randomisation was stratified according to the presence or absence of STEMI. The primary endpoint, target lesion failure (TLF), is a composite of cardiac death, target vessel myocardial infarction, and clinically indicated target lesion revascularisation within 12 months. Between February 2012 and May 2013, 407 STEMI patients were randomly assigned to treatment with BP-SES or DP-EES. At one year, TLF occurred in seven (3.4%) patients treated with BP-SES and 17 (8.8%) patients treated with DP-EES (RR 0.38, 95% CI: 0.16-0.91, p=0.024). Rates of cardiac death were 1.5% in the BP-SES group and 4.7% in the DP-EES group (RR 0.31, 95% CI: 0.08-1.14, p=0.062); rates of target vessel myocardial infarction were 0.5% and 2.6% (RR 0.18, 95% CI: 0.02-1.57, p=0.082), respectively, and rates of clinically indicated target lesion revascularisation were 1.5% in the BP-SES group versus 2.1% in the DP-EES group (RR 0.69, 95% CI: 0.16-3.10, p=0.631). There was no difference in the risk of definite stent thrombosis. CONCLUSIONS In this pre-specified subgroup analysis, BP-SES was associated with a lower rate of target lesion failure at one year compared to DP-EES in STEMI patients. These findings require confirmation in a dedicated STEMI trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND No data are available on the long-term performance of ultrathin strut biodegradable polymer sirolimus-eluting stents (BP-SES). We reported 2-year clinical outcomes of the BIOSCIENCE (Ultrathin Strut Biodegradable Polymer Sirolimus-Eluting Stent Versus Durable Polymer Everolimus-Eluting Stent for Percutaneous Coronary Revascularisation) trial, which compared BP-SES with durable-polymer everolimus-eluting stents (DP-EES) in patients undergoing percutaneous coronary intervention. METHODS AND RESULTS A total of 2119 patients with minimal exclusion criteria were assigned to treatment with BP-SES (n=1063) or DP-EES (n=1056). Follow-up at 2 years was available for 2048 patients (97%). The primary end point was target-lesion failure, a composite of cardiac death, target-vessel myocardial infarction, or clinically indicated target-lesion revascularization. At 2 years, target-lesion failure occurred in 107 patients (10.5%) in the BP-SES arm and 107 patients (10.4%) in the DP-EES arm (risk ratio [RR] 1.00, 95% CI 0.77-1.31, P=0.979). There were no significant differences between BP-SES and DP-EES with respect to cardiac death (RR 1.01, 95% CI 0.62-1.63, P=0.984), target-vessel myocardial infarction (RR 0.91, 95% CI 0.60-1.39, P=0.669), target-lesion revascularization (RR 1.17, 95% CI 0.81-1.71, P=0.403), and definite stent thrombosis (RR 1.38, 95% CI 0.56-3.44, P=0.485). There were 2 cases (0.2%) of definite very late stent thrombosis in the BP-SES arm and 4 cases (0.4%) in the DP-EES arm (P=0.423). In the prespecified subgroup of patients with ST-segment elevation myocardial infarction, BP-SES was associated with a lower risk of target-lesion failure compared with DP-EES (RR 0.48, 95% CI 0.23-0.99, P=0.043, Pinteraction=0.026). CONCLUSIONS Comparable safety and efficacy profiles of BP-SES and DP-EES were maintained throughout 2 years of follow-up. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT01443104.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Tissue engineering techniques offer a potential means to develop a tissue engineered construct (TEC) for the treatment of tissue and organ deficiencies. However, a lack of adequate vascularization is a limiting factor in the development of most viable engineered tissues. Vascular endothelial growth factor (VEGF) could aid in the development of a viable vascular network within TECs. The long-term goals of this research are to develop clinically relevant, appropriately vascularized TECs for use in humans. This project tested the hypothesis that the delivery of VEGF via controlled release from biodegradable microspheres would increase the vascular density and rate of angiogenesis within a model TEC. ^ Materials and methods. Biodegradable VEGF-encapsulated microspheres were manufactured using a novel method entitled the Solid Encapsulation/Single Emulsion/Solvent Extraction technique. Using a PLGA/PEG polymer blend, microspheres were manufactured and characterized in vitro. A model TEC using fibrin was designed for in vivo tissue engineering experimentation. At the appropriate timepoint, the TECs were explanted, and stained and quantified for CD31 using a novel semi-automated thresholding technique. ^ Results. In vitro results show the microspheres could be manufactured, stored, degrade, and release biologically active VEGF. The in vivo investigations revealed that skeletal muscle was the optimal implantation site as compared to dermis. In addition, the TECs containing fibrin with VEGF demonstrated significantly more angiogenesis than the controls. The TECs containing VEGF microspheres displayed a significant increase in vascular density by day 10. Furthermore, TECs containing VEGF microspheres had a significantly increased relative rate of angiogenesis from implantation day 5 to day 10. ^ Conclusions. A novel technique for producing microspheres loaded with biologically active proteins was developed. A defined concentration of microspheres can deliver a quantifiable level of VEGF with known release kinetics. A novel model TEC for in vivo tissue engineering investigations was developed. VEGF and VEGF microspheres stimulate angiogenesis within the model TEC. This investigation determined that biodegradable rhVEGF 165-encapsulated microspheres increased the vascular density and relative rate of angiogenesis within a model TEC. Future applications could include the incorporation of microvascular fragments into the model TEC and the incorporation of specific tissues, such as fat or bone. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implants that can be metabolized by the human body have appeared as one of the most attractive and promising solutions to overcome limitations and improve the features of current implantable devices. Biodegradable polymers and magnesium (Mg) alloys have played an important role writing the history of resorbable implants [1,2]. This paper presents the processing by extrusion/compression moulding, mechanical characterization, thermal characterization and in vitro biocompatibility of a novel generation of resorbable materials based on a polymeric matrix reinforced with metallic Mg particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) plasticized with a lactic acid oligomer (OLA) added at three different concentrations (15, 20 and 30 wt% by weight), were prepared by an optimized extrusion process to improve the processability and mechanical properties of these biopolymers for flexible film manufacturing. Morphological, chemical, thermal, mechanical, barrier and migration properties were investigated and formulations with desired performance in eco-friendly films were selected. The efficiency of OLA as plasticizer for PLA_PHB blends was demonstrated by the significant decrease of their glass transition temperatures and a considerable improvement of their ductile properties. The measured improvements in the barrier properties are related to the higher crystallinity of the plasticized PLA_PHB blends, while the overall migration test underlined that all the proposed formulations maintained migration levels below admitted levels. The PLA_PHB blend with 30 wt% OLA was selected as the optimum formulation for food packaging, since it offered the best compromise between ductility and oxygen and water vapor barrier properties with practically no migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermosetting blends of a biodegradable poly(ethylene glycol)-type epoxy resin (PEG-ER) and poly(epsilon-caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass-transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG-ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG-ER blends, that is, a PCL-rich phase and a PEG-ER crosslinked phase composed of an MAH-cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase-separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG-ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. (C) 2004 Wiley Periodicals, Inc.