887 resultados para Bio-inspired computation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este artigo apresenta uma breve revisão de alguns dos mais recentes métodos bioinspirados baseados no comportamento de populações para o desenvolvimento de técnicas de solução de problemas. As metaheurísticas tratadas aqui correspondem às estratégias de otimização por colônia de formigas, otimização por enxame de partículas, algoritmo shuffled frog-leaping, coleta de alimentos por bactérias e colônia de abelhas. Os princípios biológicos que motivaram o desenvolvimento de cada uma dessas estratégias, assim como seus respectivos algoritmos computacionais, são introduzidos. Duas aplicações diferentes foram conduzidas para exemplificar o desempenho de tais algoritmos. A finalidade é enfatizar perspectivas de aplicação destas abordagens em diferentes problemas da área de engenharia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes an investigation of the hybrid PSO/ACO algorithm to classify automatically the well drilling operation stages. The method feasibility is demonstrated by its application to real mud-logging dataset. The results are compared with bio-inspired methods, and rule induction and decision tree algorithms for data mining. © 2009 Springer Berlin Heidelberg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[ES] La Planificación de Rutas o Caminos es un disciplina de Robótica que trata la búsqueda de caminos factibles u óptimos. Para la mayoría de vehículos y entornos, no es un problema trivial y por tanto nos encontramos con un gran diversidad de algoritmos para resolverlo, no sólo en Robótica e Inteligencia Artificial, sino también como parte de la literatura de Optimización, con Métodos Numéricos y Algoritmos Bio-inspirados, como Algoritmos Genéticos y el Algoritmo de la Colonia de Hormigas. El caso particular de escenarios de costes variables es considerablemente difícil de abordar porque el entorno en el que se mueve el vehículo cambia con el tiempo. El presente trabajo de tesis estudia este problema y propone varias soluciones prácticas para aplicaciones de Robótica Submarina.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Statistical modelling and statistical learning theory are two powerful analytical frameworks for analyzing signals and developing efficient processing and classification algorithms. In this thesis, these frameworks are applied for modelling and processing biomedical signals in two different contexts: ultrasound medical imaging systems and primate neural activity analysis and modelling. In the context of ultrasound medical imaging, two main applications are explored: deconvolution of signals measured from a ultrasonic transducer and automatic image segmentation and classification of prostate ultrasound scans. In the former application a stochastic model of the radio frequency signal measured from a ultrasonic transducer is derived. This model is then employed for developing in a statistical framework a regularized deconvolution procedure, for enhancing signal resolution. In the latter application, different statistical models are used to characterize images of prostate tissues, extracting different features. These features are then uses to segment the images in region of interests by means of an automatic procedure based on a statistical model of the extracted features. Finally, machine learning techniques are used for automatic classification of the different region of interests. In the context of neural activity signals, an example of bio-inspired dynamical network was developed to help in studies of motor-related processes in the brain of primate monkeys. The presented model aims to mimic the abstract functionality of a cell population in 7a parietal region of primate monkeys, during the execution of learned behavioural tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In diesem Beitrag wird ein neuartiger biologisch inspirierter Universalgreifer beschrieben. Dieser soll in einem automatisierten Kommissionier-Szenario selbstständig Waren aus Kisten greifen, anheben und an anderer Stelle ablegen um somit das manuelle Kommissionieren von Hand zu substituieren. Auf dem Weg zu einer ausgereiften Konstruktion werden zahlreiche Fragestellungen zur Gestaltung und Anordnung der Finger und deren Antrieb gelöst. Ein für diesen Anwendungsfall entwickelter Biegeaktor wird zur Krümmung der Finger eingesetzt und bietet als Alleinstellungsmerkmal ein nahezu verschleißfreies Gelenk bei einem sehr einfachen konstruktiven Aufbau.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators’ control in terms of actuation speed and position accuracy is also addressed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tesis doctoral se enmarca dentro de la computación con membranas. Se trata de un tipo de computación bio-inspirado, concretamente basado en las células de los organismos vivos, en las que se producen múltiples reacciones de forma simultánea. A partir de la estructura y funcionamiento de las células se han definido diferentes modelos formales, denominados P sistemas. Estos modelos no tratan de modelar el comportamiento biológico de una célula, sino que abstraen sus principios básicos con objeto de encontrar nuevos paradigmas computacionales. Los P sistemas son modelos de computación no deterministas y masivamente paralelos. De ahí el interés que en los últimos años estos modelos han suscitado para la resolución de problemas complejos. En muchos casos, consiguen resolver de forma teórica problemas NP-completos en tiempo polinómico o lineal. Por otra parte, cabe destacar también la aplicación que la computación con membranas ha tenido en la investigación de otros muchos campos, sobre todo relacionados con la biología. Actualmente, una gran cantidad de estos modelos de computación han sido estudiados desde el punto de vista teórico. Sin embargo, el modo en que pueden ser implementados es un reto de investigación todavía abierto. Existen varias líneas en este sentido, basadas en arquitecturas distribuidas o en hardware dedicado, que pretenden acercarse en lo posible a su carácter no determinista y masivamente paralelo, dentro de un contexto de viabilidad y eficiencia. En esta tesis doctoral se propone la realización de un análisis estático del P sistema, como vía para optimizar la ejecución del mismo en estas plataformas. Se pretende que la información recogida en tiempo de análisis sirva para configurar adecuadamente la plataforma donde se vaya a ejecutar posteriormente el P sistema, obteniendo como consecuencia una mejora en el rendimiento. Concretamente, en esta tesis se han tomado como referencia los P sistemas de transiciones para llevar a cabo el estudio de dicho análisis estático. De manera un poco más específica, el análisis estático propuesto en esta tesis persigue que cada membrana sea capaz de determinar sus reglas activas de forma eficiente en cada paso de evolución, es decir, aquellas reglas que reúnen las condiciones adecuadas para poder ser aplicadas. En esta línea, se afronta el problema de los estados de utilidad de una membrana dada, que en tiempo de ejecución permitirán a la misma conocer en todo momento las membranas con las que puede comunicarse, cuestión que determina las reglas que pueden aplicarse en cada momento. Además, el análisis estático propuesto en esta tesis se basa en otra serie de características del P sistema como la estructura de membranas, antecedentes de las reglas, consecuentes de las reglas o prioridades. Una vez obtenida toda esta información en tiempo de análisis, se estructura en forma de árbol de decisión, con objeto de que en tiempo de ejecución la membrana obtenga las reglas activas de la forma más eficiente posible. Por otra parte, en esta tesis se lleva a cabo un recorrido por un número importante de arquitecturas hardware y software que diferentes autores han propuesto para implementar P sistemas. Fundamentalmente, arquitecturas distribuidas, hardware dedicado basado en tarjetas FPGA y plataformas basadas en microcontroladores PIC. El objetivo es proponer soluciones que permitan implantar en dichas arquitecturas los resultados obtenidos del análisis estático (estados de utilidad y árboles de decisión para reglas activas). En líneas generales, se obtienen conclusiones positivas, en el sentido de que dichas optimizaciones se integran adecuadamente en las arquitecturas sin penalizaciones significativas. Summary Membrane computing is the focus of this doctoral thesis. It can be considered a bio-inspired computing type. Specifically, it is based on living cells, in which many reactions take place simultaneously. From cell structure and operation, many different formal models have been defined, named P systems. These models do not try to model the biological behavior of the cell, but they abstract the basic principles of the cell in order to find out new computational paradigms. P systems are non-deterministic and massively parallel computational models. This is why, they have aroused interest when dealing with complex problems nowadays. In many cases, they manage to solve in theory NP problems in polynomial or lineal time. On the other hand, it is important to note that membrane computing has been successfully applied in many researching areas, specially related to biology. Nowadays, lots of these computing models have been sufficiently characterized from a theoretical point of view. However, the way in which they can be implemented is a research challenge, that it is still open nowadays. There are some lines in this way, based on distributed architectures or dedicated hardware. All of them are trying to approach to its non-deterministic and parallel character as much as possible, taking into account viability and efficiency. In this doctoral thesis it is proposed carrying out a static analysis of the P system in order to optimize its performance in a computing platform. The general idea is that after data are collected in analysis time, they are used for getting a suitable configuration of the computing platform in which P system is going to be performed. As a consequence, the system throughput will improve. Specifically, this thesis has made use of Transition P systems for carrying out the study in static analysis. In particular, the static analysis proposed in this doctoral thesis tries to achieve that every membrane can efficiently determine its active rules in every evolution step. These rules are the ones that can be applied depending on the system configuration at each computational step. In this line, we are going to tackle the problem of the usefulness states for a membrane. This state will allow this membrane to know the set of membranes with which communication is possible at any time. This is a very important issue in determining the set of rules that can be applied. Moreover, static analysis in this thesis is carried out taking into account other properties such as membrane structure, rule antecedents, rule consequents and priorities among rules. After collecting all data in analysis time, they are arranged in a decision tree structure, enabling membranes to obtain the set of active rules as efficiently as possible in run-time system. On the other hand, in this doctoral thesis is going to carry out an overview of hardware and software architectures, proposed by different authors in order to implement P systems, such as distributed architectures, dedicated hardware based on PFGA, and computing platforms based on PIC microcontrollers. The aim of this overview is to propose solutions for implementing the results of the static analysis, that is, usefulness states and decision trees for active rules. In general, conclusions are satisfactory, because these optimizations can be properly integrated in most of the architectures without significant penalties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this conceptual paper, we discuss two areas of research in robotics, robotic models of emotion and morphofunctional machines, and we explore the scope for potential cross-fertilization between them. We shift the focus in robot models of emotion from information-theoretic aspects of appraisal to the interactive significance of bodily dispositions. Typical emotional phenomena such as arousal and action readiness can be interpreted as morphofunctional processes, and their functionality may be replicated in robotic systems with morphologies that can be modulated for real-time adaptation. We investigate the control requirements for such systems, and present a possible bio-inspired architecture, based on the division of control between neural and endocrine systems in humans and animals. We suggest that emotional epi- sodes can be understood as emergent from the coordination of action control and action-readiness, respectively. This stress on morphology complements existing research on the information-theoretic aspects of emotion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of automatic pathological voice detection systems is to serve as tools, to medical specialists, for a more objective, less invasive and improved diagnosis of diseases. In this respect, the gold standard for those system include the usage of a optimized representation of the spectral envelope, either based on cepstral coefficients from the mel-scaled Fourier spectral envelope (Mel-Frequency Cepstral Coefficients) or from an all-pole estimation (Linear Prediction Coding Cepstral Coefficients) forcharacterization, and Gaussian Mixture Models for posterior classification. However, the study of recently proposed GMM-based classifiers as well as Nuisance mitigation techniques, such as those employed in speaker recognition, has not been widely considered inpathology detection labours. The present work aims at testing whether or not the employment of such speaker recognition tools might contribute to improve system performance in pathology detection systems, specifically in the automatic detection of Obstructive Sleep Apnea. The testing procedure employs an Obstructive Sleep Apnea database, in conjunction with GMM-based classifiers looking for a better performance. The results show that an improved performance might be obtained by using such approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images based on active contour models (snakes). In order to obtain an appropriate image for the use of snakes based techniques, the proposed algorithm combines a pre-processing stage including some traditional techniques (thresholding and median filter) with more sophisticated ones such as anisotropic filtering. The value selected for the thresholding was fixed to the 85% of the maximum peak of the image histogram, and the anisotropic filter permits to distinguish two intensity levels, one corresponding to the background and the other one to the foreground (glottis). The initialization carried out is based on the magnitude obtained using the Gradient Vector Flow field, ensuring an automatic process for the selection of the initial contour. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation. The results obtained suggest that this method provided results comparable with other techniques such as the proposed in (Osma-Ruiz et al., 2008).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamic and Partial Reconfiguration (DPR) allows a system to be able to modify certain parts of itself during run-time. This feature gives rise to the capability of evolution: changing parts of the configuration according to the online evaluation of performance or other parameters. The evolution is achieved through a bio-inspired model in which the features of the system are identified as genes. The objective of the evolution may not be a single one; in this work, power consumption is taken into consideration, together with the quality of filtering, as the measure of performance, of a noisy image. Pareto optimality is applied to the evolutionary process, in order to find a representative set of optimal solutions as for performance and power consumption. The main contributions of this paper are: implementing an evolvable system on a low-power Spartan-6 FPGA included in a Wireless Sensor Network node and, by enabling the availability of a real measure of power consumption at run-time, achieving the capability of multi-objective evolution, that yields different optimal configurations, among which the selected one will depend on the relative “weights” of performance and power consumption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El auge del "Internet de las Cosas" (IoT, "Internet of Things") y sus tecnologías asociadas han permitido su aplicación en diversos dominios de la aplicación, entre los que se encuentran la monitorización de ecosistemas forestales, la gestión de catástrofes y emergencias, la domótica, la automatización industrial, los servicios para ciudades inteligentes, la eficiencia energética de edificios, la detección de intrusos, la gestión de desastres y emergencias o la monitorización de señales corporales, entre muchas otras. La desventaja de una red IoT es que una vez desplegada, ésta queda desatendida, es decir queda sujeta, entre otras cosas, a condiciones climáticas cambiantes y expuestas a catástrofes naturales, fallos de software o hardware, o ataques maliciosos de terceros, por lo que se puede considerar que dichas redes son propensas a fallos. El principal requisito de los nodos constituyentes de una red IoT es que estos deben ser capaces de seguir funcionando a pesar de sufrir errores en el propio sistema. La capacidad de la red para recuperarse ante fallos internos y externos inesperados es lo que se conoce actualmente como "Resiliencia" de la red. Por tanto, a la hora de diseñar y desplegar aplicaciones o servicios para IoT, se espera que la red sea tolerante a fallos, que sea auto-configurable, auto-adaptable, auto-optimizable con respecto a nuevas condiciones que puedan aparecer durante su ejecución. Esto lleva al análisis de un problema fundamental en el estudio de las redes IoT, el problema de la "Conectividad". Se dice que una red está conectada si todo par de nodos en la red son capaces de encontrar al menos un camino de comunicación entre ambos. Sin embargo, la red puede desconectarse debido a varias razones, como que se agote la batería, que un nodo sea destruido, etc. Por tanto, se hace necesario gestionar la resiliencia de la red con el objeto de mantener la conectividad entre sus nodos, de tal manera que cada nodo IoT sea capaz de proveer servicios continuos, a otros nodos, a otras redes o, a otros servicios y aplicaciones. En este contexto, el objetivo principal de esta tesis doctoral se centra en el estudio del problema de conectividad IoT, más concretamente en el desarrollo de modelos para el análisis y gestión de la Resiliencia, llevado a la práctica a través de las redes WSN, con el fin de mejorar la capacidad la tolerancia a fallos de los nodos que componen la red. Este reto se aborda teniendo en cuenta dos enfoques distintos, por una parte, a diferencia de otro tipo de redes de dispositivos convencionales, los nodos en una red IoT son propensos a perder la conexión, debido a que se despliegan en entornos aislados, o en entornos con condiciones extremas; por otra parte, los nodos suelen ser recursos con bajas capacidades en términos de procesamiento, almacenamiento y batería, entre otros, por lo que requiere que el diseño de la gestión de su resiliencia sea ligero, distribuido y energéticamente eficiente. En este sentido, esta tesis desarrolla técnicas auto-adaptativas que permiten a una red IoT, desde la perspectiva del control de su topología, ser resiliente ante fallos en sus nodos. Para ello, se utilizan técnicas basadas en lógica difusa y técnicas de control proporcional, integral y derivativa (PID - "proportional-integral-derivative"), con el objeto de mejorar la conectividad de la red, teniendo en cuenta que el consumo de energía debe preservarse tanto como sea posible. De igual manera, se ha tenido en cuenta que el algoritmo de control debe ser distribuido debido a que, en general, los enfoques centralizados no suelen ser factibles a despliegues a gran escala. El presente trabajo de tesis implica varios retos que conciernen a la conectividad de red, entre los que se incluyen: la creación y el análisis de modelos matemáticos que describan la red, una propuesta de sistema de control auto-adaptativo en respuesta a fallos en los nodos, la optimización de los parámetros del sistema de control, la validación mediante una implementación siguiendo un enfoque de ingeniería del software y finalmente la evaluación en una aplicación real. Atendiendo a los retos anteriormente mencionados, el presente trabajo justifica, mediante una análisis matemático, la relación existente entre el "grado de un nodo" (definido como el número de nodos en la vecindad del nodo en cuestión) y la conectividad de la red, y prueba la eficacia de varios tipos de controladores que permiten ajustar la potencia de trasmisión de los nodos de red en respuesta a eventuales fallos, teniendo en cuenta el consumo de energía como parte de los objetivos de control. Así mismo, este trabajo realiza una evaluación y comparación con otros algoritmos representativos; en donde se demuestra que el enfoque desarrollado es más tolerante a fallos aleatorios en los nodos de la red, así como en su eficiencia energética. Adicionalmente, el uso de algoritmos bioinspirados ha permitido la optimización de los parámetros de control de redes dinámicas de gran tamaño. Con respecto a la implementación en un sistema real, se han integrado las propuestas de esta tesis en un modelo de programación OSGi ("Open Services Gateway Initiative") con el objeto de crear un middleware auto-adaptativo que mejore la gestión de la resiliencia, especialmente la reconfiguración en tiempo de ejecución de componentes software cuando se ha producido un fallo. Como conclusión, los resultados de esta tesis doctoral contribuyen a la investigación teórica y, a la aplicación práctica del control resiliente de la topología en redes distribuidas de gran tamaño. Los diseños y algoritmos presentados pueden ser vistos como una prueba novedosa de algunas técnicas para la próxima era de IoT. A continuación, se enuncian de forma resumida las principales contribuciones de esta tesis: (1) Se han analizado matemáticamente propiedades relacionadas con la conectividad de la red. Se estudia, por ejemplo, cómo varía la probabilidad de conexión de la red al modificar el alcance de comunicación de los nodos, así como cuál es el mínimo número de nodos que hay que añadir al sistema desconectado para su re-conexión. (2) Se han propuesto sistemas de control basados en lógica difusa para alcanzar el grado de los nodos deseado, manteniendo la conectividad completa de la red. Se han evaluado diferentes tipos de controladores basados en lógica difusa mediante simulaciones, y los resultados se han comparado con otros algoritmos representativos. (3) Se ha investigado más a fondo, dando un enfoque más simple y aplicable, el sistema de control de doble bucle, y sus parámetros de control se han optimizado empleando algoritmos heurísticos como el método de la entropía cruzada (CE, "Cross Entropy"), la optimización por enjambre de partículas (PSO, "Particle Swarm Optimization"), y la evolución diferencial (DE, "Differential Evolution"). (4) Se han evaluado mediante simulación, la mayoría de los diseños aquí presentados; además, parte de los trabajos se han implementado y validado en una aplicación real combinando técnicas de software auto-adaptativo, como por ejemplo las de una arquitectura orientada a servicios (SOA, "Service-Oriented Architecture"). ABSTRACT The advent of the Internet of Things (IoT) enables a tremendous number of applications, such as forest monitoring, disaster management, home automation, factory automation, smart city, etc. However, various kinds of unexpected disturbances may cause node failure in the IoT, for example battery depletion, software/hardware malfunction issues and malicious attacks. So, it can be considered that the IoT is prone to failure. The ability of the network to recover from unexpected internal and external failures is known as "resilience" of the network. Resilience usually serves as an important non-functional requirement when designing IoT, which can further be broken down into "self-*" properties, such as self-adaptive, self-healing, self-configuring, self-optimization, etc. One of the consequences that node failure brings to the IoT is that some nodes may be disconnected from others, such that they are not capable of providing continuous services for other nodes, networks, and applications. In this sense, the main objective of this dissertation focuses on the IoT connectivity problem. A network is regarded as connected if any pair of different nodes can communicate with each other either directly or via a limited number of intermediate nodes. More specifically, this thesis focuses on the development of models for analysis and management of resilience, implemented through the Wireless Sensor Networks (WSNs), which is a challenging task. On the one hand, unlike other conventional network devices, nodes in the IoT are more likely to be disconnected from each other due to their deployment in a hostile or isolated environment. On the other hand, nodes are resource-constrained in terms of limited processing capability, storage and battery capacity, which requires that the design of the resilience management for IoT has to be lightweight, distributed and energy-efficient. In this context, the thesis presents self-adaptive techniques for IoT, with the aim of making the IoT resilient against node failures from the network topology control point of view. The fuzzy-logic and proportional-integral-derivative (PID) control techniques are leveraged to improve the network connectivity of the IoT in response to node failures, meanwhile taking into consideration that energy consumption must be preserved as much as possible. The control algorithm itself is designed to be distributed, because the centralized approaches are usually not feasible in large scale IoT deployments. The thesis involves various aspects concerning network connectivity, including: creation and analysis of mathematical models describing the network, proposing self-adaptive control systems in response to node failures, control system parameter optimization, implementation using the software engineering approach, and evaluation in a real application. This thesis also justifies the relations between the "node degree" (the number of neighbor(s) of a node) and network connectivity through mathematic analysis, and proves the effectiveness of various types of controllers that can adjust power transmission of the IoT nodes in response to node failures. The controllers also take into consideration the energy consumption as part of the control goals. The evaluation is performed and comparison is made with other representative algorithms. The simulation results show that the proposals in this thesis can tolerate more random node failures and save more energy when compared with those representative algorithms. Additionally, the simulations demonstrate that the use of the bio-inspired algorithms allows optimizing the parameters of the controller. With respect to the implementation in a real system, the programming model called OSGi (Open Service Gateway Initiative) is integrated with the proposals in order to create a self-adaptive middleware, especially reconfiguring the software components at runtime when failures occur. The outcomes of this thesis contribute to theoretic research and practical applications of resilient topology control for large and distributed networks. The presented controller designs and optimization algorithms can be viewed as novel trials of the control and optimization techniques for the coming era of the IoT. The contributions of this thesis can be summarized as follows: (1) Mathematically, the fault-tolerant probability of a large-scale stochastic network is analyzed. It is studied how the probability of network connectivity depends on the communication range of the nodes, and what is the minimum number of neighbors to be added for network re-connection. (2) A fuzzy-logic control system is proposed, which obtains the desired node degree and in turn maintains the network connectivity when it is subject to node failures. There are different types of fuzzy-logic controllers evaluated by simulations, and the results demonstrate the improvement of fault-tolerant capability as compared to some other representative algorithms. (3) A simpler but more applicable approach, the two-loop control system is further investigated, and its control parameters are optimized by using some heuristic algorithms such as Cross Entropy (CE), Particle Swarm Optimization (PSO), and Differential Evolution (DE). (4) Most of the designs are evaluated by means of simulations, but part of the proposals are implemented and tested in a real-world application by combining the self-adaptive software technique and the control algorithms which are presented in this thesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Los resultados presentados en la memoria de esta tesis doctoral se enmarcan en la denominada computación celular con membranas una nueva rama de investigación dentro de la computación natural creada por Gh. Paun en 1998, de ahí que habitualmente reciba el nombre de sistemas P. Este nuevo modelo de cómputo distribuido está inspirado en la estructura y funcionamiento de la célula. El objetivo de esta tesis ha sido analizar el poder y la eficiencia computacional de estos sistemas de computación celular. En concreto, se han analizado dos tipos de sistemas P: por un lado los sistemas P de neuronas de impulsos, y por otro los sistemas P con proteínas en las membranas. Para el primer tipo, los resultados obtenidos demuestran que es posible que estos sistemas mantengan su universalidad aunque muchas de sus características se limiten o incluso se eliminen. Para el segundo tipo, se analiza la eficiencia computacional y se demuestra que son capaces de resolver problemas de la clase de complejidad ESPACIO-P (PSPACE) en tiempo polinómico. Análisis del poder computacional: Los sistemas P de neuronas de impulsos (en adelante SN P, acrónimo procedente del inglés «Spiking Neural P Systems») son sistemas inspirados en el funcionamiento neuronal y en la forma en la que los impulsos se propagan por las redes sinápticas. Los SN P bio-inpirados poseen un numeroso abanico de características que ha cen que dichos sistemas sean universales y por tanto equivalentes, en poder computacional, a una máquina de Turing. Estos sistemas son potentes a nivel computacional, pero tal y como se definen incorporan numerosas características, quizás demasiadas. En (Ibarra et al. 2007) se demostró que en estos sistemas sus funcionalidades podrían ser limitadas sin comprometer su universalidad. Los resultados presentados en esta memoria son continuistas con la línea de trabajo de (Ibarra et al. 2007) y aportan nuevas formas normales. Esto es, nuevas variantes simplificadas de los sistemas SN P con un conjunto mínimo de funcionalidades pero que mantienen su poder computacional universal. Análisis de la eficiencia computacional: En esta tesis se ha estudiado la eficiencia computacional de los denominados sistemas P con proteínas en las membranas. Se muestra que este modelo de cómputo es equivalente a las máquinas de acceso aleatorio paralelas (PRAM) o a las máquinas de Turing alterantes ya que se demuestra que un sistema P con proteínas, es capaz de resolver un problema ESPACIOP-Completo como el QSAT(problema de satisfacibilidad de fórmulas lógicas cuantificado) en tiempo polinómico. Esta variante de sistemas P con proteínas es muy eficiente gracias al poder de las proteínas a la hora de catalizar los procesos de comunicación intercelulares. ABSTRACT The results presented at this thesis belong to membrane computing a new research branch inside of Natural computing. This new branch was created by Gh. Paun on 1998, hence usually receives the name of P Systems. This new distributed computing model is inspired on structure and functioning of cell. The aim of this thesis is to analyze the efficiency and computational power of these computational cellular systems. Specifically there have been analyzed two different classes of P systems. On the one hand it has been analyzed the Neural Spiking P Systems, and on the other hand it has been analyzed the P systems with proteins on membranes. For the first class it is shown that it is possible to reduce or restrict the characteristics of these kind of systems without loss of computational power. For the second class it is analyzed the computational efficiency solving on polynomial time PSACE problems. Computational Power Analysis: The spiking neural P systems (SN P in short) are systems inspired by the way of neural cells operate sending spikes through the synaptic networks. The bio-inspired SN Ps possess a large range of features that make these systems to be universal and therefore equivalent in computational power to a Turing machine. Such systems are computationally powerful, but by definition they incorporate a lot of features, perhaps too much. In (Ibarra et al. in 2007) it was shown that their functionality may be limited without compromising its universality. The results presented herein continue the (Ibarra et al. 2007) line of work providing new formal forms. That is, new SN P simplified variants with a minimum set of functionalities but keeping the universal computational power. Computational Efficiency Analisys: In this thesis we study the computational efficiency of P systems with proteins on membranes. We show that this computational model is equivalent to parallel random access machine (PRAM) or alternating Turing machine because, we show P Systems with proteins can solve a PSPACE-Complete problem as QSAT (Quantified Propositional Satisfiability Problem) on polynomial time. This variant of P Systems with proteins is very efficient thanks to computational power of proteins to catalyze inter-cellular communication processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La energía transportada por el oleaje a través de los océanos (energía undimotriz) se enmarca dentro de las denominadas energías oceánicas. Su aprovechamiento para generar energía eléctrica (o ser aprovechada de alguna otra forma) es una idea reflejada ya hace más de dos siglos en una patente (1799). Desde entonces, y con especial intensidad desde los años 70, ha venido despertando el interés de instituciones ligadas al I+D+i y empresas del sector energético y tecnológico, debido principalmente a la magnitud del recurso disponible. Actualmente se puede considerar al sector en un estado precomercial, con un amplio rango de dispositivos y tecnologías en diferente grado de desarrollo en los que ninguno destaca sobre los otros (ni ha demostrado su viabilidad económica), y sin que se aprecie una tendencia a converger un único dispositivo (o un número reducido de ellos). El recurso energético que se está tratando de aprovechar, pese a compartir la característica de no-controlabilidad con otras fuentes de energía renovable como la eólica o la solar, presenta una variabilidad adicional. De esta manera, diferentes localizaciones, pese a poder presentar recursos de contenido energético similar, presentan oleajes de características muy diferentes en términos de alturas y periodos de oleaje, y en la dispersión estadística de estos valores. Esta variabilidad en el oleaje hace que cobre especial relevancia la adecuación de los dispositivos de aprovechamiento de energía undimotriz (WEC: Wave Energy Converter) a su localización, de cara a mejorar su viabilidad económica. Parece razonable suponer que, en un futuro, el proceso de diseño de un parque de generación undimotriz implique un rediseño (en base a una tecnología conocida) para cada proyecto de implantación en una nueva localización. El objetivo de esta tesis es plantear un procedimiento de dimensionado de una tecnología de aprovechamiento de la energía undimotriz concreta: los absorbedores puntuales. Dicha metodología de diseño se plantea como un problema de optimización matemático, el cual se resuelve utilizando un algoritmo de optimización bioinspirado: evolución diferencial. Este planteamiento permite automatizar la fase previa de dimensionado implementando la metodología en un código de programación. El proceso de diseño de un WEC es un problema de ingería complejo, por lo que no considera factible el planteamiento de un diseño completo mediante un único procedimiento de optimización matemático. En vez de eso, se platea el proceso de diseño en diferentes etapas, de manera que la metodología desarrollada en esta tesis se utilice para obtener las dimensiones básicas de una solución de referencia de WEC, la cual será utilizada como punto de partida para continuar con las etapas posteriores del proceso de diseño. La metodología de dimensionado previo presentada en esta tesis parte de unas condiciones de contorno de diseño definidas previamente, tales como: localización, características del sistema de generación de energía eléctrica (PTO: Power Take-Off), estrategia de extracción de energía eléctrica y concepto concreto de WEC). Utilizando un algoritmo de evolución diferencial multi-objetivo se obtiene un conjunto de soluciones factibles (de acuerdo con una ciertas restricciones técnicas y dimensionales) y óptimas (de acuerdo con una serie de funciones objetivo de pseudo-coste y pseudo-beneficio). Dicho conjunto de soluciones o dimensiones de WEC es utilizado como caso de referencia en las posteriores etapas de diseño. En el documento de la tesis se presentan dos versiones de dicha metodología con dos modelos diferentes de evaluación de las soluciones candidatas. Por un lado, se presenta un modelo en el dominio de la frecuencia que presenta importantes simplificaciones en cuanto al tratamiento del recurso del oleaje. Este procedimiento presenta una menor carga computacional pero una mayor incertidumbre en los resultados, la cual puede traducirse en trabajo adicional en las etapas posteriores del proceso de diseño. Sin embargo, el uso de esta metodología resulta conveniente para realizar análisis paramétricos previos de las condiciones de contorno, tales como la localización seleccionada. Por otro lado, la segunda metodología propuesta utiliza modelos en el domino estocástico, lo que aumenta la carga computacional, pero permite obtener resultados con menos incertidumbre e información estadística muy útil para el proceso de diseño. Por este motivo, esta metodología es más adecuada para su uso en un proceso de dimensionado completo de un WEC. La metodología desarrollada durante la tesis ha sido utilizada en un proyecto industrial de evaluación energética preliminar de una planta de energía undimotriz. En dicho proceso de evaluación, el método de dimensionado previo fue utilizado en una primera etapa, de cara a obtener un conjunto de soluciones factibles de acuerdo con una serie de restricciones técnicas básicas. La selección y refinamiento de la geometría de la solución geométrica de WEC propuesta fue realizada a posteriori (por otros participantes del proyecto) utilizando un modelo detallado en el dominio del tiempo y un modelo de evaluación económica del dispositivo. El uso de esta metodología puede ayudar a reducir las iteraciones manuales y a mejorar los resultados obtenidos en estas últimas etapas del proyecto. ABSTRACT The energy transported by ocean waves (wave energy) is framed within the so-called oceanic energies. Its use to generate electric energy (or desalinate ocean water, etc.) is an idea expressed first time in a patent two centuries ago (1799). Ever since, but specially since the 1970’s, this energy has become interesting for R&D institutions and companies related with the technological and energetic sectors mainly because of the magnitude of available energy. Nowadays the development of this technology can be considered to be in a pre-commercial stage, with a wide range of devices and technologies developed to different degrees but with none standing out nor economically viable. Nor do these technologies seem ready to converge to a single device (or a reduce number of devices). The energy resource to be exploited shares its non-controllability with other renewable energy sources such as wind and solar. However, wave energy presents an additional short-term variability due to its oscillatory nature. Thus, different locations may show waves with similar energy content but different characteristics such as wave height or wave period. This variability in ocean waves makes it very important that the devices for harnessing wave energy (WEC: Wave Energy Converter) fit closely to the characteristics of their location in order to improve their economic viability. It seems reasonable to assume that, in the future, the process of designing a wave power plant will involve a re-design (based on a well-known technology) for each implementation project in any new location. The objective of this PhD thesis is to propose a dimensioning method for a specific wave-energy-harnessing technology: point absorbers. This design methodology is presented as a mathematical optimization problem solved by using an optimization bio-inspired algorithm: differential evolution. This approach allows automating the preliminary dimensioning stage by implementing the methodology in programmed code. The design process of a WEC is a complex engineering problem, so the complete design is not feasible using a single mathematical optimization procedure. Instead, the design process is proposed in different stages, so the methodology developed in this thesis is used for the basic dimensions of a reference solution of the WEC, which would be used as a starting point for the later stages of the design process. The preliminary dimensioning methodology presented in this thesis starts from some previously defined boundary conditions such as: location, power take-off (PTO) characteristic, strategy of energy extraction and specific WEC technology. Using a differential multi-objective evolutionary algorithm produces a set of feasible solutions (according to certain technical and dimensional constraints) and optimal solutions (according to a set of pseudo-cost and pseudo-benefit objective functions). This set of solutions or WEC dimensions are used as a reference case in subsequent stages of design. In the document of this thesis, two versions of this methodology with two different models of evaluation of candidate solutions are presented. On the one hand, a model in the frequency domain that has significant simplifications in the treatment of the wave resource is presented. This method implies a lower computational load but increased uncertainty in the results, which may lead to additional work in the later stages of the design process. However, use of this methodology is useful in order to perform previous parametric analysis of boundary conditions such as the selected location. On the other hand, the second method uses stochastic models, increasing the computational load, but providing results with smaller uncertainty and very useful statistical information for the design process. Therefore, this method is more suitable to be used in a detail design process for full dimensioning of the WEC. The methodology developed throughout the thesis has been used in an industrial project for preliminary energetic assessment of a wave energy power plant. In this assessment process, the method of previous dimensioning was used in the first stage, in order to obtain a set of feasible solutions according to a set of basic technical constraints. The geometry of the WEC was refined and selected subsequently (by other project participants) using a detailed model in the time domain and a model of economic evaluation of the device. Using this methodology can help to reduce the number of design iterations and to improve the results obtained in the last stages of the project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Robotics is a field that presents a large number of problems because it depends on a large number of disciplines, devices, technologies and tasks. Its expansion from perfectly controlled industrial environments toward open and dynamic environment presents a many new challenges, such as robots household robots or professional robots. To facilitate the rapid development of robotic systems, low cost, reusability of code, its medium and long term maintainability and robustness are required novel approaches to provide generic models and software systems who develop paradigms capable of solving these problems. For this purpose, in this paper we propose a model based on multi-agent systems inspired by the human nervous system able to transfer the control characteristics of the biological system and able to take advantage of the best properties of distributed software systems.