946 resultados para BLOOD CELLS
Resumo:
We characterized the Plasmodium falciparum antigen 332 (Ag332) which is specifically expressed during the asexual intraerythrocytic cycle of the parasite. The corresponding Pf332 gene has been located in the subtelomeric region of chromosome 11. Furthermore, it is present in all strais so far analyzed and shows marked restriction length fragment polymorphism. Partial sequence and restriction endonuclease digestion of cloned fragments revealed that the Pf332 gene is composed of highly degenerated repeats rich is glutamic acid. Mung been nuclease digestion and Northern blot analysis suggested that Pf332 gene codes for a protein of about 700 kDa. These data were further confirmed by Western blot and immunoprecipitation of parasites extracts with an antiserum raised against a recombinant clone expressing part of the Ag332. Confocal immunofluorescence showed that Ag332 is translocated from the parasite to the surface of infected red blood cells within vesicle-like structures. In addition, Ag332 was detected on the surface of monkey erythrocytes infected with Plasmodium falciparum.
Resumo:
Microparticles are small phospholipid vesicles of less than 1 µm released into the blood flow by various types of cells such as endothelial, platelet, white or red blood cells. They are involved in many biological and physiological processes including hemostasis. In addition, an elevated number of microparticles in the blood is observed in various pathological situations. In the context of transfusion, erythrocyte-derived microparticles are found in red blood cell concentrates. Their role is not elucidated, and they are considered as a type of storage lesion. The purpose of this review is to present recent data showing that erythrocyte-derived microparticles most likely play a role in transfusion medicine and could cause transfusion complications.
Resumo:
The European Prospective Investigation into Cancer and nutrition (EPIC) is a long-term, multi-centric prospective study in Europe investigating the relationships between cancer and nutrition. This study has served as a basis for a number of Genome-Wide Association Studies (GWAS) and other types of genetic analyses. Over a period of 5 years, 52,256 EPIC DNA samples have been extracted using an automated DNA extraction platform. Here we have evaluated the pre-analytical factors affecting DNA yield, including anthropometric, epidemiological and technical factors such as center of subject recruitment, age, gender, body-mass index, disease case or control status, tobacco consumption, number of aliquots of buffy coat used for DNA extraction, extraction machine or procedure, DNA quantification method, degree of haemolysis and variations in the timing of sample processing. We show that the largest significant variations in DNA yield were observed with degree of haemolysis and with center of subject recruitment. Age, gender, body-mass index, cancer case or control status and tobacco consumption also significantly impacted DNA yield. Feedback from laboratories which have analyzed DNA with different SNP genotyping technologies demonstrate that the vast majority of samples (approximately 88%) performed adequately in different types of assays. To our knowledge this study is the largest to date to evaluate the sources of pre-analytical variations in DNA extracted from peripheral leucocytes. The results provide a strong evidence-based rationale for standardized recommendations on blood collection and processing protocols for large-scale genetic studies.
Resumo:
The haematological changes and release of soluble mediators, particularly C-reactive protein (CRP) and nitric oxide (NO), during uncomplicated malaria have not been well studied, especially in Brazilian areas in which the disease is endemic. Therefore, the present study examined these factors in acute (day 0) and convalescent phase (day 15) patients infected with Plasmodium falciparum and Plasmodium vivax malaria in the Brazilian Amazon. Haematologic parameters were measured using automated cell counting, CRP levels were measured with ELISA and NO plasma levels were measured by the Griess reaction. Our data indicate that individuals with uncomplicated P. vivax and P. falciparum infection presented similar inflammatory profiles with respect to white blood cells, with high band cell production and a considerable degree of thrombocytopaenia during the acute phase of infection. Higher CRP levels were detected in acute P. vivax infection than in acute P. falciparum infection, while higher NO was detected in patients with acute and convalescent P. falciparum infections. Although changes in these mediators cannot predict malaria infection, the haematological aspects associated with malaria infection, especially the roles of platelets and band cells, need to be investigated further.
Resumo:
Amoxicillin, a low-molecular-weight compound, is able to interact with dendritic cells inducing semi-maturation in vitro. Specific antigens and TLR ligands can synergistically interact with dendritic cells (DC), leading to complete maturation and more efficient T-cell stimulation. The aim of the study was to evaluate the synergistic effect of amoxicillin and the TLR2, 4 and 7/8 agonists (PAM, LPS and R848, respectively) in TLR expression, DC maturation and specific T-cell response in patients with delayed-type hypersensitivity (DTH) reactions to amoxicillin. Monocyte-derived DC from 15 patients with DTH to amoxicillin and 15 controls were cultured with amoxicillin in the presence or absence of TLR2, 4 and 7/8 agonists (PAM, LPS and R848, respectively). We studied TLR1-9 gene expression by RT-qPCR, and DC maturation, lymphocyte proliferation and cytokine production by flow cytometry. DC from both patients and controls expressed all TLRs except TLR9. The amoxicillin plus TLR2/4 or TLR7/8 ligands showed significant differences, mainly in patients: AX+PAM+LPS induced a decrease in TLR2 and AX+R848 in TLR2, 4, 7 and 8 mRNA levels. AX+PAM+LPS significantly increased the percentage of maturation in patients (75%) vs. controls (40%) (p=0.036) and T-cell proliferation (80.7% vs. 27.3% of cases; p=0.001). Moreover, the combinations AX+PAM+LPS and AX+R848 produced a significant increase in IL-12p70 during both DC maturation and T-cell proliferation. These results indicate that in amoxicillin-induced maculopapular exanthema, the presence of different TLR agonists could be critical for the induction of the innate and adaptive immune responses and this should be taken into account when evaluating allergic reactions to these drugs.
Resumo:
Critical limb ischemia in diabetic patients is associated with high rates of morbidity and mortality. Suboptimal responses to the available medical and surgical treatments are common in these patients, who also demonstrate limited vascular homeostasis. Neovasculogenesis induced by stem cell therapy could be a useful approach for these patients. Neovasculogenesis and clinical improvement were compared at baseline and at 3 and 12 months after autologous bone marrow-derived mononuclear cell (BMMNC) transplantation in diabetic patients with peripheral artery disease. We conducted a prospective study to evaluate the safety and efficacy of intra-arterial administration of autologous BMMNCs (100-400 × 10(6) cells) in 20 diabetic patients with severe below-the-knee arterial ischemia. Although the time course of clinical effects differed among patients, after 12 months of follow-up all patients presented a notable improvement in the Rutherford-Becker classification, the University of Texas diabetic wound scales, and the Ankle-Brachial Index in the target limb. The clinical outcome was consistent with neovasculogenesis, which was assessed at 3 months by digital subtraction angiography and quantified by MetaMorph software. Unfortunately, local cell therapy in the target limb had no beneficial effect on the high mortality rate in these patients. In diabetic patients with critical limb ischemia, intra-arterial perfusion of BMMNCs is a safe procedure that generates a significant increase in the vascular network in ischemic areas and promotes remarkable clinical improvement.
Resumo:
Critical limb ischemia in diabetic patients is associated with high rates of morbidity and mortality. Suboptimal responses to the available medical and surgical treatments are common in these patients, who also demonstrate limited vascular homeostasis. Neovasculogenesis induced by stem cell therapy could be a useful approach for these patients. Neovasculogenesis and clinical improvement were compared at baseline and at 3 and 12 months after autologous bone marrow-derived mononuclear cell (BMMNC) transplantation in diabetic patients with peripheral artery disease. We conducted a prospective study to evaluate the safety and efficacy of intra-arterial administration of autologous BMMNCs (100-400 × 10(6) cells) in 20 diabetic patients with severe below-the-knee arterial ischemia. Although the time course of clinical effects differed among patients, after 12 months of follow-up all patients presented a notable improvement in the Rutherford-Becker classification, the University of Texas diabetic wound scales, and the Ankle-Brachial Index in the target limb. The clinical outcome was consistent with neovasculogenesis, which was assessed at 3 months by digital subtraction angiography and quantified by MetaMorph software. Unfortunately, local cell therapy in the target limb had no beneficial effect on the high mortality rate in these patients. In diabetic patients with critical limb ischemia, intra-arterial perfusion of BMMNCs is a safe procedure that generates a significant increase in the vascular network in ischemic areas and promotes remarkable clinical improvement.
Resumo:
We studied two of the possible factors which can interfere with specific DNA amplification in a peripheral-blood PCR assay used for the diagnosis of human brucellosis. We found that high concentrations of leukocyte DNA and heme compounds inhibit PCR. These inhibitors can be efficiently suppressed by increasing the number of washings to four or five and decreasing the amount of total DNA to 2 to 4 microg, thereby avoiding false-negative results.
Resumo:
BACKGROUND: The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. MATERIAL AND METHODS: Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. RESULTS: The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. DISCUSSION: We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies.
Resumo:
OBJECTIVE: A distinct subset of proinflammatory CD4+ T cells that produce interleukin-17 was recently identified. These cells are implicated in different autoimmune disease models, such as experimental autoimmune encephalomyelitis and collagen-induced arthritis, but their involvement in human autoimmune disease has not yet been clearly established. The purpose of this study was to assess the frequency and functional properties of Th17 cells in healthy donors and in patients with different autoimmune diseases. METHODS: Peripheral blood was obtained from 10 psoriatic arthritis (PsA), 10 ankylosing spondylitis (AS), 10 rheumatoid arthritis (RA), and 5 vitiligo patients, as well as from 25 healthy donors. Synovial tissue samples from a separate group of patients were also evaluated (obtained as paraffin-embedded sections). Peripheral blood cells were analyzed by multiparameter flow cytometry and immunohistochemistry. Cytokine production was examined by enzyme-linked immunosorbent assay and intracellular cytokine staining using specific monoclonal antibodies. Synovial tissue was examined for infiltrating T cells by immunohistochemical analysis. RESULTS: We found increased numbers of circulating Th17 cells in the peripheral blood of patients with seronegative spondylarthritides (PsA and AS), but not in patients with RA or vitiligo. In addition, Th17 cells from the spondylarthritis patients showed advanced differentiation and were polyfunctional in terms of T cell receptor-driven cytokine production. CONCLUSION: These observations suggest a role of Th17 cells in the pathogenesis of certain human autoimmune disorders, in particular the seronegative spondylarthritides.
Resumo:
Microparticles are phospholipid vesicles shed mostly in biological fluids, such as blood or urine, by various types of cells, such as red blood cells (RBCs), platelets, lymphocytes, endothelial cells. These microparticles contain a subset of the proteome of their parent cell, and their ready availability in biological fluid has raised strong interest in their study, as they might be markers of cell damage. However, their small size as well as their particular physico-chemical properties makes them hard to detect, size, count and study by proteome analysis. In this review, we report the pre-analytical and methodological caveats that we have faced in our own research about red blood cell microparticles in the context of transfusion science, as well as examples from the literature on the proteomics of various kinds of microparticles.
Resumo:
Highly quantitative biomarkers of neurodegenerative disease remain an important need in the urgent quest for disease-modifying therapies. For Huntington's disease (HD), a genetic test is available (trait marker), but necessary state markers are still in development. In this report, we describe a large battery of transcriptomic tests explored as state biomarker candidates. In an attempt to exploit the known neuroinflammatory and transcriptional perturbations of disease, we measured relevant mRNAs in peripheral blood cells. The performance of these potential markers was weak overall, with only one mRNA, immediate early response 3 (IER3), showing a modest but significant increase of 32% in HD samples compared with controls. No statistically significant differences were found for any other mRNAs tested, including a panel of 12 RNA biomarkers identified in a previous report [Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bouzou B, Jensen RV, et al. (2005) Proc Natl Acad Sci USA 102:11023-11028]. The present results may nonetheless inform the future design and testing of HD biomarker strategies.
Resumo:
Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.
Resumo:
Bone marrow hematopoietic stem cells (HSCs) are crucial to maintain lifelong production of all blood cells. Although HSCs divide infrequently, it is thought that the entire HSC pool turns over every few weeks, suggesting that HSCs regularly enter and exit cell cycle. Here, we combine flow cytometry with label-retaining assays (BrdU and histone H2B-GFP) to identify a population of dormant mouse HSCs (d-HSCs) within the lin(-)Sca1+cKit+CD150+CD48(-)CD34(-) population. Computational modeling suggests that d-HSCs divide about every 145 days, or five times per lifetime. d-HSCs harbor the vast majority of multilineage long-term self-renewal activity. While they form a silent reservoir of the most potent HSCs during homeostasis, they are efficiently activated to self-renew in response to bone marrow injury or G-CSF stimulation. After re-establishment of homeostasis, activated HSCs return to dormancy, suggesting that HSCs are not stochastically entering the cell cycle but reversibly switch from dormancy to self-renewal under conditions of hematopoietic stress.
Resumo:
To study telomere length dynamics in hematopoietic cells with age, we analyzed the average length of telomere repeat sequences in diverse populations of nucleated blood cells. More than 500 individuals ranging in age from 0 to 90 yr, including 36 pairs of monozygous and dizygotic twins, were analyzed using quantitative fluorescence in situ hybridization and flow cytometry. Granulocytes and naive T cells showed a parallel biphasic decline in telomere length with age that most likely reflected accumulated cell divisions in the common precursors of both cell types: hematopoietic stem cells. Telomere loss was very rapid in the first year, and continued for more than eight decades at a 30-fold lower rate. Memory T cells also showed an initial rapid decline in telomere length with age. However, in contrast to naive T cells, this decline continued for several years, and in older individuals lymphocytes typically had shorter telomeres than did granulocytes. Our findings point to a dramatic decline in stem cell turnover in early childhood and support the notion that cell divisions in hematopoietic stem cells and T cells result in loss of telomeric DNA.