953 resultados para B2 RECEPTORS
Resumo:
Aims: To evaluate the potential therapeutic utility of histone deacetylase inhibitors (HDACi) in targeting VEGF receptors in non-small-cell lung cancer. Materials & methods: Non-small-cell lung cancer cells were screened for the VEGF receptors at the mRNA and protein levels, while cellular responses to various HDACi were examined. Results: Significant effects on the regulation of the VEGF receptors were observed in response to HDACi. These were associated with decreased secretion of VEGF, decreased cellular proliferation and increased apoptosis which could not be rescued by addition of exogenous recombinant VEGF. Direct remodeling of the VEGFR1 and VEGFR2 promoters was observed. In contrast, HDACi treatments resulted in significant downregulation of the Neuropilin receptors. Conclusion: Epigenetic targeting of the Neuropilin receptors may offer an effective treatment for lung cancer patients in the clinical setting.
Resumo:
Enteropathogenic Escherichia coli strains of diffused adherent (DA) and localised adherent (LA) phenotypes were tested for their ability to bind to glycolipids. DA strains did not bind to the glycolipids tested, while LA strains bound to asialo GM1, asialo GM2, globoside and lacto-N-neotetraose in decreasing order of avidity. The minimum common sequence among the four glycolipids could be delineated as GalNac β 1–4 Gal as the binding epitope with GalNac β 1–3 Gal and GlcNac β 1–3 Gal serving as relatively weaker binders. The binding was not inhibited by a variety of free oligosaccharides or by the neoglycoproteins tested. Adhesion-negative mutants of an enteropathogenic LA strain showed a markedly reduced binding to asialo GM1 indicating that the recognition of GalNac β 1–4 Gal was correlated with the ability to adhere to HeLa cells. Thus recognition and binding to glycolipids could play an important role in colonisation through adherence to intestinal surfaces.
Resumo:
Nuclear receptors (NRs) comprise a large family of proteins that mediate the effects of small lipophilic molecules such as steroid hormones. In addition, there are a group of NRs which lack identified natural ligands and are referred as orphan NRs. In this thesis, the function of two such orphan NR families, the NR3B (ERRα, ERRβ and ERRγ) and the NR4A family (NGFI-B, Nurr1 and Nor1), was studied. NR3B and NR4A receptors regulate many biological processes such as energy metabolism and carcinogenesis. In addition, NR3B and NR4A receptors are expressed in bone. Therefore, the signaling and function of NR3B and NR4A orphan nuclear receptors was studied specifically in osteoblasts. NR4A receptors were found to be regulated by NR3B receptors and the Wnt/β-catenin signaling pathway as ERRα, ERRγ and β-catenin repressed the transcriptional activity of NR4A receptors in U2-OS cells. NGFI-B was found to repress the transcriptional activity of ERRγ in HeLa cells. The phytoestrogen equol was identified as a new agonist for ERRγ and ERRβ in PC-3, U2-OS, and SaOS-2 cells. Equol increased the transcriptional activity of ERRγ by increasing ERRγ co-activator binding and by inducing a conformational change in the ligand binding pocket of ERRγ. The growth inhibitory effect of equol on PC-3 prostate cancer cells was decreased by blocking ERRγ expression by siRNA. Therefore, ERRγ could mediate some of the beneficial health effects of equol. The Wnt/β-catenin signaling pathway is important for the differentiation and function of osteoblasts. NR3B and NR4A receptors were found to repress the transcriptional activity mediated by β-catenin in U2-OS cells. The mesenchymal stem cells (MSCs) isolated from ERRα knockout (KO) mice showed diminished proliferation and osteoblastic differentiation compared to the wild-type cells. The overexpression of ERRα in osteoblastic MC3T3-E1 cell line increased their mineralization. Bone sialoprotein (BSP) was shown to be a direct target gene for ERRα and ERRγ as the BSP promoter was activated by ERRα or ERRγ and PGC-1α in HeLa cells. The adipogenic differentiation of ERRα KO MSCs was also decreased and they expressed less adipogenic marker genes. In conclusion, the studies described in this thesis demonstrated that the transcriptional activity of NR3B and NR4A receptors can be regulated by other orphan NRs and signaling pathways in osteoblasts. NR3B receptors can also be regulated by ligands and a new agonist, equol, was identified for ERRβ and ERRγ. New roles for NR3B and NR4A were also identified as they were shown to converge with the Wnt signaling pathway in osteoblasts, ERRγ was shown to mediate the growth inhibitory effect of equol in prostate cancer cells, and ERRα was shown to regulate positively MSC proliferation, osteoblastic differentiation and adipogenesis.
Resumo:
The neuronal cell adhesion molecule ICAM-5 ICAM-5 (telencephalin) belongs to the intercellular adhesion molecule (ICAM)-subgroup of the immunoglobulin superfamily (IgSF). ICAMs participate in leukocyte adhesion and adhesion-dependent functions in the central nervous system (CNS) through interacting with the leukocyte-specific b2 integrins. ICAM-5 is found in the mammalian forebrain, appears at the time of birth, and is located at the cell soma and neuronal dendrites. Recent studies also show that it is important for the regulation of immune functions in the brain and for the development and maturation of neuronal synapses. The clinical importance of ICAM-5 is still under investigation; it may have a role in the development of Alzheimer s disease (AD). In this study, the role of ICAM-5 in neuronal differentiation and its associations with a-actinin and N-methyl-D-aspartic acid (NMDA) receptors were examined. NMDA receptors (NMDARs) are known to be involved in many neuronal functions, including the passage of information from one neuron to another one, and thus it was thought important to study their role related to ICAM-5. The results suggested that ICAM-5 was able to induce dendritic outgrowth through homophilic adhesion (ICAM-5 monomer binds to another ICAM-5 monomer in the same or neighbouring cell), and the homophilic binding activity appeared to be regulated by monomer/multimer transition. Moreover, ICAM-5 binding to a-actinin was shown to be important for neuritic outgrowth. It was examined whether matrix metalloproteinases (MMPs) are the main enzymes involved in ICAM-5 ectodomain cleavage. The results showed that stimulation of NMDARs leads to MMP activation, cleavage of ICAM-5 and it is accompanied by dendritic spine maturation. These findings also indicated that ICAM-5 and NMDA receptor subunit 1 (NR1) compete for binding to a-actinin, and ICAM-5 may regulate the NR1 association with the actin cytoskeleton. Thus, it is concluded that ICAM-5 is a crucial cell adhesion molecule involved in the development of neuronal synapses, especially in the regulation of dendritic spine development, and its functions may also be involved with memory formation and learning.
Resumo:
Earlier studies in this laboratory had implicated heme to function as a positive modulator of phenobarbitonemediated activation of CYPIIB1/B2 gene transcription in rat liver. However, recent reports have indicated that succinylacetone, a specific inhibitor of δ-aminolevulinate dehydrase, does not affect this process. The present studies indicate that succinylacetone does inhibit the phenobarbitone-mediated increase in CYPIIB1/B2 mRNAs and their transcription in rat liver at early time points (45 min to 3 h), but the inhibition is not pronounced at later time points (16 h). Succinylacetone is a weaker inhibitor of heme biosynthesis than CoCl2, 3-amino-1,2,4-triazole, or thioacetamide used earlier in this laboratory. Succinylacetone induces δ-aminolevulinate synthase, whereas the other compounds depress the levels of the enzyme. There is a good correlation between the amount of freshly synthesized nuclear heme pool and the activation of CYPIIB1/B2 transcription by phenobarbitone. A model implicating a nuclear heme pool regulating the transcription of δ-aminolevulinate synthase, CYPIIB1/ B2, and heme oxygenase genes is proposed.
Resumo:
Fast excitatory transmission between neurons in the central nervous system is mainly mediated by L-glutamate acting on ligand gated (ionotropic) receptors. These are further categorized according to their pharmacological properties to AMPA (2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid), NMDA (N-Methyl-D-aspartic acid) and kainate (KAR) subclasses. In the rat and the mouse hippocampus, development of glutamatergic transmission is most dynamic during the first postnatal weeks. This coincides with the declining developmental expression of the GluK1 subunit-containing KARs. However, the function of KARs during early development of the brain is poorly understood. The present study reveals novel types of tonically active KARs (hereafter referred to as tKARs) which play a central role in functional development of the hippocampal CA3-CA1 network. The study shows for the first time how concomitant pre- and postsynaptic KAR function contributes to development of CA3-CA1 circuitry by regulating transmitter release and interneuron excitability. Moreover, the tKAR-dependent regulation of transmitter release provides a novel mechanism for silencing and unsilencing early synapses and thus shaping the early synaptic connectivity. The role of GluK1-containing KARs was studied in area CA3 of the neonatal hippocampus. The data demonstrate that presynaptic KARs in excitatory synapses to both pyramidal cells and interneurons are tonically activated by ambient glutamate and that they regulate glutamate release differentially, depending on target cell type. At synapses to pyramidal cells these tKARs inhibit glutamate release in a G-protein dependent manner but in contrast, at synapses to interneurons, tKARs facilitate glutamate release. On the network level these mechanisms act together upregulating activity of GABAergic microcircuits and promoting endogenous hippocampal network oscillations. By virtue of this, tKARs are likely to have an instrumental role in the functional development of the hippocampal circuitry. The next step was to investigate the role of GluK1 -containing receptors in the regulation of interneuron excitability. The spontaneous firing of interneurons in the CA3 stratum lucidum is markedly decreased during development. The shift involves tKARs that inhibit medium-duration afterhyperpolarization (mAHP) in these neurons during the first postnatal week. This promotes burst spiking of interneurons and thereby increases GABAergic activity in the network synergistically with the tKAR-mediated facilitation of their excitatory drive. During development the amplitude of evoked medium afterhyperpolarizing current (ImAHP) is dramatically increased due to decoupling tKAR activation and ImAHP modulation. These changes take place at the same time when the endogeneous network oscillations disappear. These tKAR-driven mechanisms in the CA3 area regulate both GABAergic and glutamatergic transmission and thus gate the feedforward excitatory drive to the area CA1. Here presynaptic tKARs to CA1 pyramidal cells suppress glutamate release and enable strong facilitation in response to high-frequency input. Therefore, CA1 synapses are finely tuned to high-frequency transmission; an activity pattern that is common in neonatal CA3-CA1 circuitry both in vivo and in vitro. The tKAR-regulated release probability acts as a novel presynaptic silencing mechanism that can be unsilenced in response to Hebbian activity. The present results shed new light on the mechanisms modulating the early network activity that paves the way for oscillations lying behind cognitive tasks such as learning and memory. Kainate receptor antagonists are already being developed for therapeutic use for instance against pain and migraine. Because of these modulatory actions, tKARs also represent an attractive candidate for therapeutic treatment of developmentally related complications such as learning disabilities.
Resumo:
Eighteen corpora striata from normal human foetal brains ranging in gestational age from 16 to 40 weeks and five from post natal brains ranging from 23 days to 42 years were analysed for the ontogeny of dopamine receptors using [3H]spiperone as the ligand and 10 mM dopamine hydrochloride was used in blanks. Spiperone binding sites were characterized in a 40-week-old foetal brain to be dopamine receptors by the following criteria: (1) It was localized in a crude mitochondrial pellet that included synaptosomes; (2) binding was saturable at 0.8 nM concentration; (3) dopaminergic antagonists spiperone, haloperidol, pimozide, trifluperazine and chlorpromazine competed for the binding with IC50 values in the range of 0.3–14 nM while agonists—apomorphine and dopamine gave IC50 values of 2.5 and 10 μM, respectively suggesting a D2 type receptor.Epinephrine and norepinephrine inhibited the binding much less efficiently while mianserin at 10 μM and serotonin at 1 mM concentration did not inhibit the binding. Bimolecular association and dissociation rate constants for the reversible binding were 5.7 × 108 M−1 min−1 and 5.0 × 10−2 min−1, respectively. Equilibrium dissociation constant was 87 pM and the KD obtained by saturation binding was 73 pM.During the foetal age 16 to 40 weeks, the receptor concentration remained in the range of 38–60 fmol/mg protein or 570–1080 fmol/g striatum but it increased two-fold postnatally reaching a maximum at 5 years Significantly, at lower foetal ages (16–24 weeks) the [3H]spiperone binding sites exhibited a heterogeneity with a high (KD, 13–85 pM) and a low (KD, 1.2–4.6 nM) affinity component, the former accounting for 13–24% of the total binding sites. This heterogeneity persisted even when sulpiride was used as a displacer. The number of high affinity sites increased from 16 weeks to 24 weeks and after 28 weeks of gestation, all the binding sites showed only a single high affinity.GTP decreased the agonist affinity as observed by dopamine competition of [3H]spiperone binding in 20-week-old foetal striata and at all subsequent ages. GTP increased IC50 values of dopamine 2 to 4.5 fold and Hill coefficients were also increased becoming closer to one suggesting that the dopamine receptor was susceptible to regulation from foetal life onwards.
Resumo:
The region -160 to -127 nt of the upstream of CYP-2B1/B2 gene has been found to function as a negative cis-acting element on the basis of DNase-I footprint and gel mobility shift assays as well as cell-free transcriptional assays using Bal-31 mutants. A reciprocal relationship in the interaction of the negative and the recently characterized positive elements with their respective protein factors has been found under repressed and induced conditions of the gene. The negative element also harbors the core glucocorticoid responsive sequence, TGTCCT. It is concluded that the negative element mediates the repressed state of the gene under the uninduced condition and also mediates the repressive effect of dexamethasone, when given along with the inducer phenobarbitone in rats. Dexamethasone is able to antagonize the effects of phenobarbitone at as low a concentration as 100 mu g/kg body wt in these animals. (C) 1995 Academic Press,Inc.
Resumo:
The positive element (PE) (-69 to -98 bp) within the 5'-proximal region of the CYP2B1B2 gene (+1 to -179 bp) of rat liver is essential for phenobarbitone (PB) response and gives a single major complex with the rat liver cytosol in gel shift analysis. This complex corresponds to complex I (top) of the three complexes given by the nuclear extracts. PB treatment of rats leads to a decrease in complex I formation with the cytosol and PE and an increase in the same with the nuclear extract in gel shift analysis. Both the changes are counteracted by simultaneous okadaic acid administration. The nuclear protein giving rise to complex I has been isolated and has an M-r of 26 kDa. The cytosolic counterpart consists of two species, 26 and 28 kDa, as revealed by Southwestern blot analysis using labeled PE. It is concluded that PB treatment leads to the translocation accompanied by processing of the cytosolic protein species into the nucleus that requires protein dephosphorylation. It is suggested that PB may exert a global regulation on the transcription of many genes by modulating the phosphorylation status of different protein factors involved in transcriptional regulation. (C) 2002 Elsevier Science (USA).