981 resultados para Auriferous mineralization
Resumo:
Between the villages of Rocker and Silver Bow, in southwestern Montana, are found an interesting group of placers. Gold occurs in Tertiary gravel beds that are interstratified with beds of rhyolitic volcanic ash. With the aid of a plane table and open-sight alidade, a small portion of the lake-bed area near Rocker was mapped; all distances were paced, but numerous checks assure a fairly accurate map.
Resumo:
The Bonanza mine of the Emery mining district in Powell County is on the largest veins in the area, and is developed to a depth of 680 feet by an incline shaft following the dip of the structure. Sulfide ores carrying gold and silver values are mined throughout the area which is easily accessible by road from Deerlodge, Montana, ten miles west of the district.
Resumo:
BACKGROUND: The aim of this study was to develop an experimental model that allows to elude the potential role of the preexisting graft microvasculature for vascularization and mineralization of osteochondral grafts. ANIMALS AND METHODS: For that purpose, the II-IV metatarsals of fetal DDY-mice known to be nonvascularized at day 16 of gestation (M16) but vascularized at day 18 (M18) were freshly transplanted into dorsal skin fold chambers of adult DDY mice. Using intravital microscopy angiogenesis, leukocyte-endothelium interaction and mineralization were assessed for 12 days. RESULTS: Angiogenesis occurred at 32 hours in M18, but not before 57 hours in M16 (p = 0.002), with perfusion of these vessels at 42 hours (p = 0.005) and 65 hours (p = 0.1), respectively. Vessels reached a density three times as high as that of the recipient site at day 6, remaining constant until day 12 in M18, whereas in M16 vascular density increased from day 6 and reached that of M18 at day 12 (p = 0.04). Leukocyte-endothelium interaction showed sticker counts elevated by a factor of 4-5 in M18 as compared to M16. Mineralization of osteochondral grafts did not differ between M16 and M18, which significantly increased in both groups throughout the observation period. INTERPRETATION: We propose the faster kinetics in the angiogenic response to M18 and the elevated counts of sticking leukocytes to rest on the potential of establishing end-to-end anastomoses (inosculation) of the vascularized graft with recipient vessels.
Resumo:
Dicalcium phosphate dihydrate (brushite) and octacalcium phosphate (OCP) crystals are precursors of hydroxyapatite (HAp) for tooth enamel, dentine, and bones formation in living organisms. Here, we introduce a new method for biomimicking brushite and OCP in starch using single and double diffusion techniques. Brushite and OCP crystals were grown by precipitation in starch after gelation. The obtained materials were analyzed by infrared spectroscopy (IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and confocal laser scanning microscopy (CLSM). IR spectra demonstrate starch inclusion by peak shifts in the 2900–3500 cm–1 region. SEM showed two different morphologies: plate-shaped and needle-like crystals. Calcium phosphate/starch aggregates bear strong resemblance to prismatic brushite kidney stones. This may open up a clue to understand the mechanism of kidney stone formation.
Resumo:
Based on litter mass and litterfall data, decomposition rates for leaves were found to be fast (k = 3.3) and the turnover times short (3.6 mo) on the low-nutrient sandy soils of Korup. Leaf litter of four ectomycorrhizal tree species (Berlinia bracteosa, Didelotia africana, Microberlinia bisulcata and Tetraberlinia bifoliolata) and of three non-ectomycorrhizal species (Cola verticillata, Oubanguia alata and Strephonema pseudocola) from Korup were left to decompose in 2-mm mesh bags on the forest floor in three plots of each of two forest types forest of low (LEM) and high (HEM) abundance of ectomycorrhizal (caesalp) trees. The litter of the ectomycorrhizal species decayed at a significantly slower rate than that of the non-ectomycorrhizal species, although the former were richer in P and N concentrations of the start. Disappearance rates of the litter layer showed a similar trend. Ectomycorrhizal species immobilized less N, but mineralized more P, than non-ectomycorrhizal species. Differences between species groups in K, Mg and Ca mineralization were negligible. Effect of forest type was clear only for Mg: mineralization of Mg was faster in the HEM than LEM plots, a pattern repeated across all species. This difference was attributed to a much more prolific fine root mat in the HEM than LEM forest. The relatively fast release of P from the litter of the ectomycorrhizal species suggests that the mat must allow an efficient uptake to maintain P in the forest ecosystem.
Resumo:
The Yanque nonsulfide Pb-Zn deposit (inferred resources 12.5 Mt @ 3.7% Pb and @ 3.5% Zn) is located in the Andahuaylas-Yauri ore province (Cuzco, southern Peru). The deposit occurs within a base metal mineralized district, centered on the medium-sized Dolores porphyry copper. A thorough geological, mineralogical and geochemical study has carried out in order to define: the relationships between the Dolores Cu-porphyry ore and the Yanque Zn-Pb polymetallic mineralization, and the characteristics of the economic nonsulfide concentrations. Both sedimentary and igneous rocks constitute the backbone of the Yanque-Dolores area. The sedimentary lithologies belong to the Soraya, Mara and Ferrobamba Fms. (upper Jurassic-middle Cretaceous). The Yanque orebody is hosted by the Mara Fm., which prevailingly consists of a siliciclastic sedimentary breccia. The original sulfide mineralization consisted of galena, pyrite and sphalerite. The host rock has been affected by a strong hydrothermal alteration, characterized by prevailing sericite/illite, as in the typical porphyry-related phyllic-argillic alteration stage, and by minor kaolinite, dolomite and quartz. Minor element geochemistry, characterized by Sb, As, Mn, Ag and locally also by Cu, points to magmatic-hydrothermal related mineralizing fluids. The Pb isotopic compositions from Dolores and Yanque sulfides are similar, and are typical of the Tertiary magmatically-derived ores in this part of Peru. The hydrothermally altered rocks at Yanque have the same Pb isotopic compositions as the sulfides, thus confirming the hypothesis that the Yanque primary Zn-Pb mineralization may have been produced by hydrothermal circulation related to the emplacement of the Dolores Cu-porphyry, as it is the case of other porphyry Cu systems associated with polymetallic mineralization elsewhere. However, no simple genetic model for the mineralization involving just one fluid circulation episode is able to explain the data. The Yanque economic nonsulfide ore association consists of sauconite, hemimorphite, smithsonite and cerussite, which result from the weathering and alteration of the original sulfide mineralization. Zinc is allocated mainly in sauconite (Zn-smectite), rather than in carbonates: a factor strictly related to the prevailing siliciclastic character of the host rock. Distinctive features of the Yanque orebody are the comparable ore grades for both Pb and Zn (3.5% Zn and 3.7% Pb), and the inverse supergene chemical zoning. In fact, contrary to other supergene ores of this type, zinc prevails in the top zone of the Yanque deposit, whereas lead content increases with depth. Considering the different mobility of the two metals in solution, it may be assumed that most of the primary zinc that was the source for the Yanque nonsulfides was originally located far from the position occupied by the galena mineralization, whose remnants have been observed on site. Zinc sulfides may have been originally contained in the eroded rock volumes that surrounded the actual deposit: the zinc-rich solutions have possibly migrated through the siliciclastic Mara Fm. and precipitated the nonsulfide minerals by porosity filling and replacement processes. In this sense, the Yanque secondary Zn-Pb deposit could be considered as a special type of “Exotic” mineralization.
Resumo:
Poly(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10(6) g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by Streptococcus gordonii, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention.
Resumo:
The effect of biochar on the soil carbon mineral- ization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on physicochemical properties and CO2 emissions of a sandy loam soil. For this purpose, soil was amended with three different biochars (BI, BII and BIII) at a rate of 8 wt % and soil CO2 emissions were measured for 45 days. BI is produced from a mixed wood sieving from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coef- ficients (r 2 ) greater than 0.97. Results show a negative prim- ing effect in the soil after addition of BI and a positive prim- ing effect in the case of soil amended with BII and BIII. These results can be related to different biochar properties such as carbon content, carbon aromaticity, volatile matter, fixed carbon, easily oxidized organic carbon or metal and phenolic substance content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.
Resumo:
The CENTURY soil organic matter model was adapted for the DSSAT (Decision Support System for Agrotechnology Transfer), modular format in order to better simulate the dynamics of soil organic nutrient processes (Gijsman et al., 2002). The CENTURY model divides the soil organic carbon (SOC) into three hypothetical pools: microbial or active material (SOC1), intermediate (SOC2) and the largely inert and stable material (SOC3) (Jones et al., 2003). At the beginning of the simulation, CENTURY model needs a value of SOC3 per soil layer which can be estimated by the model (based on soil texture and management history) or given as an input. Then, the model assigns about 5% and 95% of the remaining SOC to SOC1 and SOC2, respectively. The model performance when simulating SOC and nitrogen (N) dynamics strongly depends on the initialization process. The common methods (e.g. Basso et al., 2011) to initialize SOC pools deal mostly with carbon (C) mineralization processes and less with N. Dynamics of SOM, SOC, and soil organic N are linked in the CENTURY-DSSAT model through the C/N ratio of decomposing material that determines either mineralization or immobilization of N (Gijsman et al., 2002). The aim of this study was to evaluate an alternative method to initialize the SOC pools in the DSSAT-CENTURY model from apparent soil N mineralization (Napmin) field measurements by using automatic inverse calibration (simulated annealing). The results were compared with the ones obtained by the iterative initialization procedure developed by Basso et al., 2011.
Resumo:
In humans, SOX9 heterozygous mutations cause the severe skeletal dysmorphology syndrome campomelic dysplasia. Except for clinical descriptions, little is known about the pathogenesis of this disease. We have generated heterozygous Sox9 mutant mice that phenocopy most of the skeletal abnormalities of this syndrome. The Sox9+/− mice died perinatally with cleft palate, as well as hypoplasia and bending of many skeletal structures derived from cartilage precursors. In embryonic day (E)14.5 heterozygous embryos, bending of radius, ulna, and tibia cartilages was already prominent. In E12.5 heterozygotes, all skeletal elements visualized by using Alcian blue were smaller. In addition, the overall levels of Col2a1 RNA at E10.5 and E12.5 were lower than in wild-type embryos. We propose that the skeletal abnormalities observed at later embryonic stages were caused by delayed or defective precartilaginous condensations. Furthermore, in E18.5 embryos and in newborn heterozygotes, premature mineralization occurred in many bones, including vertebrae and some craniofacial bones. Because Sox9 is not expressed in the mineralized portion of the growth plate, this premature mineralization is very likely the consequence of allele insufficiency existing in cells of the growth plate that express Sox9. Because the hypertrophic zone of the heterozygous Sox9 mutants was larger than that of wild-type mice, we propose that Sox9 also has a role in regulating the transition to hypertrophic chondrocytes in the growth plate. Despite the severe hypoplasia of cartilages, the overall organization and cellular composition of the growth plate were otherwise normal. Our results suggest the hypothesis that two critical steps of the chondrocyte differentiation pathway are sensitive to Sox9 dosage. First, an early step presumably at the stage of mesenchymal condensation of cartilage primordia, and second, a later step preceding the transition of chondrocytes into hypertrophic chondrocytes.
Resumo:
v.6:no.2 (1878)
Resumo:
Mode of access: Internet.